101 research outputs found

    Fractional Order Fault Tolerant Control - A Survey

    Get PDF
    In this paper, a comprehensive review of recent advances and trends regarding Fractional Order Fault Tolerant Control (FOFTC) design is presented. This novel robust control approach has been emerging in the last decade and is still gathering great research efforts mainly because of its promising results and outcomes. The purpose of this study is to provide a useful overview for researchers interested in developing this interesting solution for plants that are subject to faults and disturbances with an obligation for a maintained performance level. Throughout the paper, the various works related to FOFTC in literature are categorized first by considering their research objective between fault detection with diagnosis and fault tolerance with accommodation, and second by considering the nature of the studied plants depending on whether they are modelized by integer order or fractional order models. One of the main drawbacks of these approaches lies in the increase in complexity associated with introducing the fractional operators, their approximation and especially during the stability analysis. A discussion on the main disadvantages and challenges that face this novel fractional order robust control research field is given in conjunction with motivations for its future development. This study provides a simulation example for the application of a FOFTC against actuator faults in a Boeing 747 civil transport aircraft is provided to illustrate the efficiency of such robust control strategies

    Fractional-Order Sliding Mode Synchronization for Fractional-Order Chaotic Systems

    Get PDF
    Some sufficient conditions, which are valid for stability check of fractional-order nonlinear systems, are given in this paper. Based on these results, the synchronization of two fractional-order chaotic systems is investigated. A novel fractional-order sliding surface, which is composed of a synchronization error and its fractional-order integral, is introduced. The asymptotical stability of the synchronization error dynamical system can be guaranteed by the proposed fractional-order sliding mode controller. Finally, two numerical examples are given to show the feasibility of the proposed methods

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Robust adaptive synchronization of a class of uncertain chaotic systems with unknown time-delay

    Get PDF
    In this paper, a robust adaptive control strategy is proposed to synchronize a class of uncertain chaotic systems with unknown time delays. Using Lyapunov theory and Lipschitz conditions in chaotic systems, the necessary adaptation rules for estimating uncertain parameters and unknown time delays are determined. Based on the proposed adaptation rules, an adaptive controller is recommended for the robust synchronization of the aforementioned uncertain systems that prove the robust stability of the proposed control mechanism utilizing the Lyapunov theorem. Finally, to evaluate the proposed robust and adaptive control mechanism, the synchronization of two Jerk chaotic systems with finite non-linear uncertainty and external disturbances as well as unknown fixed and variable time delays are simulated. The simulation results confirm the ability of the proposed control mechanism in robust synchronization of the uncertain chaotic systems as well as to estimate uncertain and unknown parameters

    Indirect neural-enhanced integral sliding mode control for finite-time fault-tolerant attitude tracking of spacecraft

    Get PDF
    In this article, a neural integral sliding mode control strategy is presented for the finite-time fault-tolerant attitude tracking of rigid spacecraft subject to unknown inertia and disturbances. First, an integral sliding mode controller was developed by originally constructing a novel integral sliding mode surface to avoid the singularity problem. Then, the neural network (NN) was embedded into the integral sliding mode controller to compensate the lumped uncertainty and replace the robust switching term. In this way, the chattering phenomenon was significantly suppressed. Particularly, the mechanism of indirect neural approximation was introduced through inequality relaxation. Benefiting from this design, only a single learning parameter was required to be adjusted online, and the computation burden of the proposed controller was extremely reduced. The stability argument showed that the proposed controller could guarantee that the attitude and angular velocity tracking errors were regulated to the minor residual sets around zero in a finite time. It was noteworthy that the proposed controller was not only strongly robust against unknown inertia and disturbances, but also highly insensitive to actuator faults. Finally, the effectiveness and advantages of the proposed control strategy were validated using simulations and comparisons

    Model-free controller design for nonlinear underactuated systems with uncertainties and disturbances by using extended state observer based chattering-free sliding mode control

    Get PDF
    MakaleWOS:000912458400001Most of the control strategies require a mathematical model or reasonable knowledge that is difficult to obtain for complex systems. Model-free control is a good alternative to avoid the difficulties and complex modeling procedures, especially if the knowledge about the system is insufficient. This paper presents a new control scheme completely independent of the system model. The proposed scheme combines sliding mode control (SMC) with intelligent proportional integral derivative (iPID) control based on a local model and extended state observer (ESO). Although the iPID control makes the proposed method model-free, it cannot guarantee that the tracking errors converge to zero asymptotically except the system is in a steady-state regime. Therefore, the SMC is added to the control scheme to ensure the convergence by minimizing the estimation errors of the observer. The proposed iPIDSMC controller is tested in the presence of different parameter variations and external disturbances on an inverted pendulum - cart (IPC), which is a highly unstable underactuated system with nonlinear coupled dynamics. The proposed controller is compared with the PID, iPID and Hierarchical Sliding Mode Control (HSMC) for a clearer evaluation. Simulation results showed that the proposed controller is extremely insensitive to parameter variations, matched and mismatched disturbances and the control signal of the proposed method is chattering-free, even though it is based on a discontinuous control action

    Risk Control for Synchronizing a New Economic Model

    Get PDF
    Risk analysis in control problems is a critical but often overlooked issue in this research area. The main goal of this analysis is to assess the reliability of designed controllers and their impact on applied systems. The chaotic behavior of fractional-order economical systems has been extensively investigated in previous studies, leading to advancements in such systems. However, this chaotic behavior poses unpredictable risks to the economic system. This paper specifically investigates the reliability and risk analysis of chaotic fractional-order systems synchronization. Furthermore, we present a technique as a new mechanism to evaluate controller performance in the presence of obvious effects. Through a series of simulation studies, the reliability and risk associated with the proposed controllers are illustrated. Ultimately, we show that the suggested technique effectively reduces the risks associated with designed controllers
    corecore