1,414 research outputs found

    Complete damage in linear elastic materials - Modeling, weak formulation and existence results

    Full text link
    In this work, we introduce a degenerating PDE system with a time-depending domain for complete damage processes under time-varying Dirichlet boundary conditions. The evolution of the system is described by a doubly nonlinear differential inclusion for the damage process and a quasi-static balance equation for the displacement field which are strongly nonlinearly coupled. In our proposed model, the material may completely disintegrate which is indispensable for a realistic modeling of damage processes in elastic materials. Complete damage theories lead to several mathematical problems since for instance coercivity properties of the free energy are lost and, therefore, several difficulties arise. For the introduced complete damage model, we propose a classical formulation and a corresponding suitable weak formulation in an SBVSBV-framework. The main aim is to prove existence of weak solutions for the introduced degenerating model. In addition, we show that the classical differential inclusion can be regained from the notion of weak solutions under certain regularity assumptions which is a novelty in the theory of complete damage models of this type

    One-dimensional parametric determining form for the two-dimensional Navier-Stokes equations

    Full text link
    The evolution of a determining form for the 2D Navier-Stokes equations (NSE), which is an ODE on a space of trajectories is completely described. It is proved that at every stage of its evolution, the solution is a convex combination of the initial trajectory and the fixed steady state, with a dynamical convexity parameter Īø\theta, which will be called the characteristic determining parameter. That is, we show a remarkable separation of variables formula for the solution of the determining form. Moreover, for a given initial trajectory, the dynamics of the infinite-dimensional determining form are equivalent to those of the characteristic determining parameter Īø\theta which is governed by a one-dimensional ODE. %for the parameter specifying the position on the line segment. This one-dimensional ODE is used to show that if the solution to the determining form converges to the fixed state it does so no faster than O(Ļ„āˆ’1/2)\mathcal{O}(\tau^{-1/2}), otherwise it converges to a projection of some other trajectory in the global attractor of the NSE, but no faster than O(Ļ„āˆ’1)\mathcal{O}(\tau^{-1}), as Ļ„ā†’āˆž\tau \to \infty, where Ļ„\tau is the evolutionary variable in determining form. The one-dimensional ODE also exploited in computations which suggest that the one-sided convergence rate estimates are in fact achieved. The ODE is then modified to accelerate the convergence to an exponential rate. Remarkably, it is shown that the zeros of the scalar function that governs the dynamics of Īø\theta, which are called characteristic determining values, identify in a unique fashion the trajectories in the global attractor of the 2D NSE. Furthermore, the one-dimensional characteristic determining form enables us to find unanticipated geometric features of the global attractor, a subject of future research

    Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods

    Full text link
    The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projection method is perturbation resilient. By this we mean that under appropriate conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a point in the intersection of the given subsets of the feasibility problem, despite certain perturbations which are allowed in each iterative step. Unlike previous works on solving the convex feasibility problem, the involved functions, which induce the feasibility problem's subsets, need not be convex. Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker condition, that we call "zero-convexity". This class, which is introduced and discussed here, holds a promise to solve optimization problems in various areas, especially in non-smooth and non-convex optimization. The relevance of this study to approximate minimization and to the recent superiorization methodology for constrained optimization is explained.Comment: Mathematical Programming Series A, accepted for publicatio

    Numerical analysis of parabolic p-Laplacian: Approximation of trajectories

    Get PDF
    The long time numerical approximation of the parabolic p-Laplacian problem with a time-independent forcing term and sufficiently smooth initial data is studied. Convergence and stability results which are uniform for t is an element of [0, infinity) are established in the L-2, W-1,W-p norms for the backward Euler and the Crank-Nicholson schemes with the finite element method (FEM). This result extends the existing uniform convergence results for exponentially contractive semigroups generated by some semilinear systems to nonexponentially contractive semigroups generated by some quasilinear systems
    • ā€¦
    corecore