21 research outputs found

    Hybrid Volitional Control of a Robotic Transtibial Prosthesis using a Phase Variable Impedance Controller

    Full text link
    For robotic transtibial prosthesis control, the global kinematics of the tibia can be used to monitor the progression of the gait cycle and command smooth and continuous actuation. In this work, these global tibia kinematics are used to define a phase variable impedance controller (PVIC), which is then implemented as the nonvolitional base controller within a hybrid volitional control framework (PVI-HVC). The gait progression estimation and biomechanic performance of one able-bodied individual walking on a robotic ankle prosthesis via a bypass adapter are compared for three control schemes: a passive benchmark controller, PVIC, and PVI-HVC. The different actuation of each controller had a direct effect on the global tibia kinematics, but the average deviation between the estimated and ground truth gait percentage were 1.6%, 1.8%, and 2.1%, respectively, for each controller. Both PVIC and PVI-HVC produced good agreement with able-bodied kinematic and kinetic references. As designed, PVI-HVC results were similar to those of PVIC when the user used low volitional intent, but yielded higher peak plantarflexion, peak torque, and peak power when the user commanded high volitional input in late stance. This additional torque and power also allowed the user to volitionally and continuously achieve activities beyond level walking, such as ascending ramps, avoiding obstacles, standing on tip-toes, and tapping the foot. In this way, PVI-HVC offers the kinetic and kinematic performance of the PVIC during level ground walking, along with the freedom to volitionally pursue alternative activities.Comment: 7 pages, 7 figures, submitted to ICRA 202

    Study of composite elastic elements for transfemoral prostheses: the MyLeg Project

    Get PDF
    In this thesis, the work on the design and realization of a semi-active foot prosthesis with variable stiffness system is presented. The final prosthesis was the result of a path started by the design of the elastic composite elements of an ESR prosthesis, a passive prosthetic device, generally prescribed to amputees with K3 and K4 of level of ambulation. The design of both the ESR prosthesis and the final variable stiffness prosthesis was carried out using a new systematic methodology of prosthesis design. This methodology has been developed and then presented in the same thesis by the author. Modelling and simulation techniques are illustrated step by step. With the variable stiffness prosthesis, the aim is to allow future users to perform more daily activities without being restricted by the conditions of the ground. It has been chosen to develop a semi-active prosthesis rather than a bionic foot for two main reasons: a bionic foot may be too expensive for most future users; and a bionic foot may be undesirable for too much weight; the much weight can be due to the motor and batteries, in addition to the structure that will certainly be much more complex than the structure of a semi-active prosthesis. To investigate the effectiveness of the variable stiffness, human subjects with amputees will be carried out

    Upslope Walking with Transfemoral Prosthesis Using Optimization Based Spline Generation

    Get PDF
    Powered prosthetic devices are robotic systems that are aimed to restore the mobility of subjects with amputations above the knee by imitating the behavior of a normal human leg. Powered prostheses have diverse advantages compared to passive devices, including the possibility of reducing the metabolic cost of the user, providing net power into the walking gait and walking on diverse terrain. In particular, this thesis is focused on the capacity of powered transfemoral prostheses to adapt to diverse terrains. Since most terrains consist of flat and inclined surfaces, it is important that a transfemoral prosthesis can walk on these surfaces and have the capacity to seamlessly transition from one surface to another. However, currently available controllers require either intention recognition procedures that delay the terrain transition or a collection of parameters that require a large tuning process for each possible surface profile. In this thesis, we propose a framework that can generate automatically stable and human-like gaits for both surfaces with immediate transition between them. The new framework is based on human-inspired control and a spline-based trajectory generation. Specifically, the proposed method i) inserts a set of cubic splines that smoothly blend the flat ground joint trajectories into arbitrary upslope surface joint trajectories for the ankle and knee joints and ii) employs a low gain PD control for terrain adaptation for various unknown surfaces. This framework is implemented on the powered transfemoral prosthetic device, AMPRO II, for both flat ground and upslope walking to test its use as a nominal controller. The experimental results confirm that the proposed framework provides walking gaits for flat ground and upslope with seamlessly smooth transitioning gaits between them

    The Functionality Verification through Pilot Human Subject Testing of MyFlex-δ: An ESR Foot Prosthesis with Spherical Ankle Joint

    Get PDF
    Most biomechanical research has focused on level-ground walking giving less attention to other conditions. As a result, most lower limb prosthesis studies have focused on sagittal plane movements. In this paper, an ESR foot is presented, of which five different stiffnesses were optimized for as many weight categories of users. It is characterized by a spherical ankle joint, with which, combined with the elastic elements, the authors wanted to create a prosthesis that gives the desired stiffness in the sagittal plane but at the same time, gives flexibility in the other planes to allow the adaptation of the foot prosthesis to the ground conditions. The ESR foot was preliminarily tested by participants with transfemoral amputation. After a brief familiarization with the device, each participant was asked to wear markers and to walk on a sensorized treadmill to measure their kinematics and kinetics. Then, each participant was asked to leave feedback via an evaluation questionnaire. The measurements and feedback allowed us to evaluate the performance of the prosthesis quantitatively and qualitatively. Although there were no significant improvements on the symmetry of the gait, due also to very limited familiarization time, the participants perceived an improvement brought by the spherical ankle joint

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    corecore