7 research outputs found

    Finite-region boundedness and stabilization for 2D continuous-discrete systems in Roesser model

    Get PDF
    This paper investigates the finite-region boundedness (FRB) and stabilization problems for two-dimensional continuous-discrete linear Roesser models subject to two kinds of disturbances. For two-dimensional continuous-discrete system, we first put forward the concepts of finite-region stability and FRB. Then, by establishing special recursive formulas, sufficient conditions of FRB for two-dimensional continuous-discrete systems with two kinds of disturbances are formulated. Furthermore, we analyze the finite-region stabilization issues for the corresponding two-dimensional continuous-discrete systems and give generic sufficient conditions and sufficient conditions that can be verified by linear matrix inequalities for designing the state feedback controllers which ensure the closed-loop systems FRB. Finally, viable experimental results are demonstrated by illustrative examples

    Linear Algebra Methods for the Control of Multidimensional Systems

    Get PDF
    The purpose of the thesis is to develop a comprehensive theory of the geometric control for N-dimensional systems. Two possible representations and their structural invariance properties of 2-D systems will be considered and generalised to the N-dimensional case: the Fornasini-Marchesini first order model and Fornasini-Marchesini second order model. In addition, necessary and sufficient conditions for the existence of solutions for the implicit 2-D Fornasini-Marchesini models will be provided, and generalised to the N-dimensional case

    Finite-region stabilization via dynamic output feedback for 2-D Roesser models

    Get PDF
    Finite-region stability (FRS), a generalization of finite-time stability, has been used to analyze the transient behavior of discrete two-dimensional (2-D) systems. In this paper, we consider the problem of FRS for discrete 2-D Roesser models via dynamic output feedback. First, a sufficient condition is given to design the dynamic output feedback controller with a state feedback-observer structure, which ensures the closed-loop system FRS. Then, this condition is reducible to a condition that is solvable by linear matrix inequalities. Finally, viable experimental results are demonstrated by an illustrative example

    Geometric Fault Detection and Isolation of Infinite Dimensional Systems

    Get PDF
    A broad class of dynamical systems from chemical processes to flexible mechanical structures, heat transfer and compression processes in gas turbine engines are represented by a set of partial differential equations (PDE). These systems are known as infinite dimensional (Inf-D) systems. Most of Inf-D systems, including PDEs and time-delayed systems can be represented by a differential equation in an appropriate Hilbert space. These Hilbert spaces are essentially Inf-D vector spaces, and therefore, they are utilized to represent Inf-D dynamical systems. Inf-D systems have been investigated by invoking two schemes, namely approximate and exact methods. Both approaches extend the control theory of ordinary differential equation (ODE) systems to Inf-D systems, however by utilizing two different methodologies. In the former approach, one needs to first approximate the original Inf-D system by an ODE system (e.g. by using finite element or finite difference methods) and then apply the established control theory of ODEs to the approximated model. On the other hand, in the exact approach, one investigates the Inf-D system without using any approximation. In other words, one first represents the system as an Inf-D system and then investigates it in the corresponding Inf-D Hilbert space by extending and generalizing the available results of finite-dimensional (Fin-D) control theory. It is well-known that one of the challenging issues in control theory is development of algorithms such that the controlled system can maintain the required performance even in presence of faults. In the literature, this property is known as fault tolerant control. The fault detection and isolation (FDI) analysis is the first step in order to achieve this goal. For Inf-D systems, the currently available results on the FDI problem are quite limited and restricted. This thesis is mainly concerned with the FDI problem of the linear Inf-D systems by using both approximate and exact approaches based on the geometric control theory of Fin-D and Inf-D systems. This thesis addresses this problem by developing a geometric FDI framework for Inf-D systems. Moreover, we implement and demonstrate a methodology for applying our results to mathematical models of a heat transfer and a two-component reaction-diffusion processes. In this thesis, we first investigate the development of an FDI scheme for discrete-time multi-dimensional (nD) systems that represent approximate models for Inf-D systems. The basic invariant subspaces including unobservable and unobservability subspaces of one-dimensional (1D) systems are extended to nD models. Sufficient conditions for solvability of the FDI problem are provided, where an LMI-based approach is also derived for the observer design. The capability of our proposed FDI methodology is demonstrated through numerical simulation results to an approximation of a hyperbolic partial differential equation system of a heat exchanger that is represented as a two-dimensional (2D) system. In the second part, an FDI methodology for the Riesz spectral (RS) system is investigated. RS systems represent a large class of parabolic and hyperbolic PDE in Inf-D systems framework. This part is mainly concerned with the equivalence of different types of invariant subspaces as defined for RS systems. Necessary and sufficient conditions for solvability of the FDI problem are developed. Moreover, for a subclass of RS systems, we first provide algorithms (for computing the invariant subspaces) that converge in a finite and known number of steps and then derive the necessary and sufficient conditions for solvability of the FDI problem. Finally, by generalizing the results that are developed for RS systems necessary and sufficient conditions for solvability of the FDI problem in a general Inf-D system are derived. Particularly, we first address invariant subspaces of Fin-D systems from a new point of view by invoking resolvent operators. This approach enables one to extend the previous Fin-D results to Inf-D systems. Particularly, necessary and sufficient conditions for equivalence of various types of conditioned and controlled invariant subspaces of Inf-D systems are obtained. Duality properties of Inf-D systems are then investigated. By introducing unobservability subspaces for Inf-D systems the FDI problem is formally formulated, and necessary and sufficient conditions for solvability of the FDI problem are provided

    NLGA based Active Control in Aerospace: fault tolerability, disturbance rejection, and parameter estimation

    Get PDF
    A new control scheme has been presented in this thesis. Based on the NonLinear Geometric Approach, the proposed Active Control System represents a new way to see the reconfigurable controllers for aerospace applications. The presence of the Diagnosis module (providing the estimation of generic signals which, based on the case, can be faults, disturbances or system parameters), mean feature of the depicted Active Control System, is a characteristic shared by three well known control systems: the Active Fault Tolerant Controls, the Indirect Adaptive Controls and the Active Disturbance Rejection Controls. The standard NonLinear Geometric Approach (NLGA) has been accurately investigated and than improved to extend its applicability to more complex models. The standard NLGA procedure has been modified to take account of feasible and estimable sets of unknown signals. Furthermore the application of the Singular Perturbations approximation has led to the solution of Detection and Isolation problems in scenarios too complex to be solved by the standard NLGA. Also the estimation process has been improved, where multiple redundant measuremtent are available, by the introduction of a new algorithm, here called "Least Squares - Sliding Mode". It guarantees optimality, in the sense of the least squares, and finite estimation time, in the sense of the sliding mode. The Active Control System concept has been formalized in two controller: a nonlinear backstepping controller and a nonlinear composite controller. Particularly interesting is the integration, in the controller design, of the estimations coming from the Diagnosis module. Stability proofs are provided for both the control schemes. Finally, different applications in aerospace have been provided to show the applicability and the effectiveness of the proposed NLGA-based Active Control System

    Resilience for Asynchronous Iterative Methods for Sparse Linear Systems

    Get PDF
    Large scale simulations are used in a variety of application areas in science and engineering to help forward the progress of innovation. Many spend the vast majority of their computational time attempting to solve large systems of linear equations; typically arising from discretizations of partial differential equations that are used to mathematically model various phenomena. The algorithms used to solve these problems are typically iterative in nature, and making efficient use of computational time on High Performance Computing (HPC) clusters involves constantly improving these iterative algorithms. Future HPC platforms are expected to encounter three main problem areas: scalability of code, reliability of hardware, and energy efficiency of the platform. The HPC resources that are expected to run the large programs are planned to consist of billions of processing units that come from more traditional multicore processors as well as a variety of different hardware accelerators. This growth in parallelism leads to the presence of all three problems. Previously, work on algorithm development has focused primarily on creating fault tolerance mechanisms for traditional iterative solvers. Recent work has begun to revisit using asynchronous methods for solving large scale applications, and this dissertation presents research into fault tolerance for fine-grained methods that are asynchronous in nature. Classical convergence results for asynchronous methods are revisited and modified to account for the possible occurrence of a fault, and a variety of techniques for recovery from the effects of a fault are proposed. Examples of how these techniques can be used are shown for various algorithms, including an analysis of a fine-grained algorithm for computing incomplete factorizations. Lastly, numerous modeling and simulation tools for the further construction of iterative algorithms for HPC applications are developed, including numerical models for simulating faults and a simulation framework that can be used to extrapolate the performance of algorithms towards future HPC systems

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area
    corecore