42 research outputs found

    Cutting mechanics and efficiency of forward and reverse multidirectional turning

    Get PDF
    Open Access via the Elsevier Agreement. This work was partially supported by Sichuan Science and Technology Program (23MZGC0052), the General Research Fund of Hong Kong Research Grant Council (PolyU15500721), National Natural Science Foundation of China (No. 51875480).Peer reviewedPublisher PD

    Experimental Study And Modeling Of Mechanical Micro-machining Of Particle Reinforced Heterogeneous Materials

    Get PDF
    This study focuses on developing explicit analytical and numerical process models for mechanical micro-machining of heterogeneous materials. These models are used to select suitable process parameters for preparing and micro-machining of these advanced materials. The material system studied in this research is Magnesium Metal Matrix Composites (Mg-MMCs) reinforced with nano-sized and micro-sized silicon carbide (SiC) particles. This research is motivated by increasing demands of miniaturized components with high mechanical performance in various industries. Mg-MMCs become one of the best candidates due to its light weight, high strength, and high creep/wear resistance. However, the improved strength and abrasive nature of the reinforcements bring great challenges for the subsequent micro-machining process. Systematic experimental investigations on the machinability of Mg-MMCs reinforced with SiC nano-particles have been conducted. The nanocomposites containing 5 Vol.%, 10 Vol.% and 15 Vol.% reinforcements, as well as pure magnesium, are studied by using the Design of Experiment (DOE) method. Cutting forces, surface morphology and surface roughness are characterized to understand the machinability of the four materials. Based on response surface methodology (RSM) design, experimental models and related contour plots have been developed to build a connection between different materials properties and cutting parameters. Those models can be used to predict the cutting force, the surface roughness, and then optimize the machining process. An analytical cutting force model has been developed to predict cutting forces of MgMMCs reinforced with nano-sized SiC particles in the micro-milling process. This model is iv different from previous ones by encompassing the behaviors of reinforcement nanoparticles in three cutting scenarios, i.e., shearing, ploughing and elastic recovery. By using the enhanced yield strength in the cutting force model, three major strengthening factors are incorporated, including load-bearing effect, enhanced dislocation density strengthening effect and Orowan strengthening effect. In this way, the particle size and volume fraction, as significant factors affecting the cutting forces, are explicitly considered. In order to validate the model, various cutting conditions using different size end mills (100 ”m and 1 mm dia.) have been conducted on Mg-MMCs with volume fraction from 0 (pure magnesium) to 15 Vol.%. The simulated cutting forces show a good agreement with the experimental data. The proposed model can predict the major force amplitude variations and force profile changes as functions of the nanoparticles’ volume fraction. Next, a systematic evaluation of six ductile fracture models has been conducted to identify the most suitable fracture criterion for micro-scale cutting simulations. The evaluated fracture models include constant fracture strain, Johnson-Cook, Johnson-Cook coupling criterion, Wilkins, modified Cockcroft-Latham, and Bao-Wierzbicki fracture criterion. By means of a user material subroutine (VUMAT), these fracture models are implemented into a Finite Element (FE) orthogonal cutting model in ABAQUS/Explicit platform. The local parameters (stress, strain, fracture factor, velocity fields) and global variables (chip morphology, cutting forces, temperature, shear angle, and machined surface integrity) are evaluated. Results indicate that by coupling with the damage evolution, the capability of Johnson-Cook and Bao-Wierzbicki can be further extended to predict accurate chip morphology. Bao-Wierzbiki-based coupling model provides the best simulation results in this study. v The micro-cutting performance of MMCs materials has also been studied by using FE modeling method. A 2-D FE micro-cutting model has been constructed. Firstly, homogenized material properties are employed to evaluate the effect of particles’ volume fraction. Secondly, micro-structures of the two-phase material are modeled in FE cutting models. The effects of the existing micro-sized and nano-sized ceramic particles on micro-cutting performance are carefully evaluated in two case studies. Results show that by using the homogenized material properties based on Johnson-Cook plasticity and fracture model with damage evolution, the micro-cutting performance of nano-reinforced Mg-MMCs can be predicted. Crack generation for SiC particle reinforced MMCs is different from their homogeneous counterparts; the effect of micro-sized particles is different from the one of nano-sized particles. In summary, through this research, a better understanding of the unique cutting mechanism for particle reinforced heterogeneous materials has been obtained. The effect of reinforcements on micro-cutting performance is obtained, which will help material engineers tailor suitable material properties for special mechanical design, associated manufacturing method and application needs. Moreover, the proposed analytical and numerical models provide a guideline to optimize process parameters for preparing and micro-machining of heterogeneous MMCs materials. This will eventually facilitate the automation of MMCs’ machining process and realize high-efficiency, high-quality, and low-cost manufacturing of composite materials

    Numerical methods for the modelling of chip formation

    Get PDF
    The modeling of metal cutting has proved to be particularly complex due to the diversity of physical phenomena involved, including thermo-mechanical coupling, contact/friction and material failure. During the last few decades, there has been significant progress in the development of numerical methods for modeling machining operations. Furthermore, the most relevant techniques have been implemented in the the relevant commercial codes creating tools for the engineers working in the design of processes and cutting devices. This paper presents a review on the numerical modeling methods and techniques used for the simulation of machining processes. The main purpose is to identify the strengths and weaknesses of each method and strategy developed up-to-now. Moreover the review covers the classical Finite Element Method covering mesh-less methods, particle-based methods and different possibilities of Eulerian and Lagrangian approaches.Postprint (author's final draft

    Numerical Methods for the Modelling of Chip Formation

    Get PDF
    The modeling of metal cutting has proved to be particularly complex due to the diversity of physical phenomena involved, including thermo-mechanical coupling, contact/friction and material failure. During the last few decades, there has been significant progress in the development of numerical methods for modeling machining operations. Furthermore, the most relevant techniques have been implemented in the relevant commercial codes creating tools for the engineers working in the design of processes and cutting devices. This paper presents a review on the numerical modeling methods and techniques used for the simulation of machining processes. The main purpose is to identify the strengths and weaknesses of each method and strategy developed up-to-now. Moreover the review covers the classical Finite Element Method covering mesh-less methods, particle-based methods and different possibilities of Eulerian and Lagrangian approaches

    Study on Ductile Fracture with Anisotropic and Strain Rate Effects in Manufacturing Processes

    Get PDF
    Ductile fracture is a topic of great importance in automotive and aerospace industries. Prediction of ductile fracture in engineering structures relies on developing robust material models under complex loading conditions. This dissertation addresses the anisotropic and strain rate effects in constitutive and ductile fracture models of lightweight metals. In the present modeling framework, the anisotropic plasticity behavior is modeled by combination of an initial anisotropic yield function and an isotropic hardening correction by Lode dependence. A new all-strain based anisotropic fracture model is proposed based on the approach of linear transformation on plastic strain rate tensor. The strain rate effects in ductile fracture is considered as an extension of the modified Mohr-Coulomb (MMC) fracture model by coupling strain rate with stress state in terms of Lode angle parameter. The rate-dependent MMC model provides a well-bound solution up to the intermediate strain rate range ( \u3c 1000/s) for metal forming and crashworthiness applications. The present modeling framework is calibrated from coupon tests of aluminum alloy and advanced high strength steel (AHSS) sheets using digital image correlation (DIC) technique and validated through correlations by finite element (FE) simulations. This study also demonstrates the applications of ductile fracture modeling in manufacturing processes. The thermo-mechanical FE simulations of orthogonal cutting processes using the Johnson-Cook constitutive and damage models show that the highly damaged regions in zones of material separation form a thin boundary layer at the tool tip. The numerical simulation results explain the success of analytical model with uncoupled component works of plasticity, friction and separation. The FE modeling results of formability and component-level testing suggest that part behavior and material failure is well predicted using calibrated ductile fracture models under different loading conditions

    Impulse-Based Manufacturing Technologies

    Get PDF
    In impulse-based manufacturing technologies, the energy required to form, join or cut components acts on the workpiece in a very short time and suddenly accelerates workpiece areas to very high velocities. The correspondingly high strain rates, together with inertia effects, affect the behavior of many materials, resulting in technological benefits such as improved formability, reduced localizing and springback, extended possibilities to produce high-quality multi material joints and burr-free cutting. This Special Issue of JMMP presents the current research findings, which focus on exploiting the full potential of these processes by providing a deeper understanding of the technology and the material behavior and detailed knowledge about the sophisticated process and equipment design. The range of processes that are considered covers electromagnetic forming, electrohydraulic forming, adiabatic cutting, forming by vaporizing foil actuators and other impulse-based manufacturing technologies. Papers show significant improvements in the aforementioned processes with regard to: Processes analysis; Measurement technique; Technology development; Materials and modelling; Tools and equipment; Industrial implementation

    A finite element study of the mechanics of micro-groove machining of 4340 steel

    Get PDF
    Microgroove features have been widely used in hot embossing molds, micro-heat exchangers, optical lithography masks, micro-forming dies, engineered surface textures, etc. The challenge of achieving such feature is the control of the process parameters to minimize the side burr that often damages the microgroove. Besides, there is a limitation of the experimental study on gathering the cutting performance information such as temperature, stress, and chip formation for the purpose of process improvements. Therefore, a 3D Finite Element (FE) model was developed to study the microgroove cutting process. However, the frictional heat has not been considered in the previous FE models and could have big impact on predictions of the side burr height, chip thickness, temperature in the chip, and the cutting force experienced by the tool. To better understand the process mechanics of micro-groove cutting, the 3D finite element model for microgroove machining of steel developed previously has been enhanced to include the friction heat generation. The side burr and chip formation were predicted and validated with experimental results in AISI 4340 steel, which showed that the model predicted side burr height within 6.7% and chip thickness within 3.3 % error. Various process mechanics including temperature distribution in the chip, cutting force predictions, and stress distribution in the workpiece were studied. It was found that coupling the thermal and mechanical effects, and including the friction heat improved the prediction of the cutting performance. It was also noticed that the cutting tool with a small edge radius and a larger rake angle experienced lower temperature, lower stresses, and smaller cutting forces on its rake face

    Challenges and issues in continuum modelling of tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals

    Get PDF
    Contribution of finite element method (FEM) as a modelling and simulation technique to represent complex tribological processes has improved our understanding about various biomaterials. This paper presents a review of the advances in the domain of finite element (FE) modelling for simulating tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals used in bio tribology and machining. Although the study is largely focused on material removal cases in metals, the modelling strategies can be applied to a wide range of other materials. This study discusses the development of friction models, meshing and remeshing strategies, and constitutive material models. The mesh-based and meshless formulations employed for bio tribological simulations with their advantages and limitations are also discussed. The output solution variables including scratch forces, local temperature, residual stresses are analyzed as a function of input variables
    corecore