2,537 research outputs found

    Polyelectrolyte Networks: Elasticity, Swelling, and the Violation of the Flory - Rehner Hypothesis

    Full text link
    This paper discusses the elastic behavior of polyelectrolyte networks. The deformation behavior of single polyelectrolyte chains is discussed. It is shown that a strong coupling between interactions and chain elasticity exists. The theory of the complete crosslinked networks shows that the Flory - Rehner - Hypothesis (FRH) does not hold. The modulus contains contributions from the classical rubber elasticity and from the electrostatic interactions. The equilibrium degree of swelling is estimated by the assumption of a c∗c^{*}-network.Comment: submitted to Computational and Theoretical Polymer Scienc

    Modulated wavepackets associated with longitudinal dust grain oscillations in a dusty plasma crystal

    Full text link
    The nonlinear amplitude modulation of longitudinal dust lattice waves (LDLWs) propagating in a dusty plasma crystal is investigated in a continuum approximation. It is shown that long wavelength LDLWs are modulationally stable, while shorter wavelengths may be unstable. The possibility for the formation and propagation of different envelope localized excitations is discussed. It is shown that the total grain displacement bears a (weak) constant displacement (zeroth harmonic mode), due to the asymmetric form of the nonlinear interaction potential. The existence of asymmetric envelope localized modes is predicted. The types and characteristics of these coherent nonlinear structures are discussed.Comment: 18 pages, 7 figures, to appear in Physics of Plasma

    Continuum theory of partially fluidized granular flows

    Full text link
    A continuum theory of partially fluidized granular flows is developed. The theory is based on a combination of the equations for the flow velocity and shear stresses coupled with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this theory to several important granular problems: avalanche flow in deep and shallow inclined layers, rotating drums and shear granular flows between two plates. We carry out quantitative comparisons between the theory and experiment.Comment: 28 pages, 23 figures, submitted to Phys. Rev.

    Kink dynamics in the MSTB model

    Get PDF
    Producción CientíficaIn this paper kink scattering processes are investigated in the Montonen–Sarker–Trullinger–Bishop (MSTB) model. The MSTB model is in fact a one-parametric family of relativistic scalar field theories living in a one-time one-space Minkowski space-time which encompasses two coupled scalar fields. Among the static solutions of the model two kinds of topological kinks are distinguished in a precise range of the family parameter. In that regime there exists one unstable kink exhibiting only one non-null component of the scalar field. Another type of topological kink solutions, stable in this case, includes two different kinks for which the two components of the scalar field are non-null. Both one-component and two-component topological kinks are accompanied by their antikink partners. The decay of the unstable kink to one of the stable solutions plus radiation is numerically computed. The pair of stable two-component kinks living respectively on upper and lower semi-ellipses in the field space belongs to the same topological sector in the configuration space and provides an ideal playground to address several scattering events involving one kink and either its own antikink or the antikink of the other stable kink. By means of numerical analysis we shall find and describe interesting physical phenomena. Bion (kink–antikink oscillations) formation, kink reflection, kink–antikink annihilation, kink transmutation and resonances are examples of these types of events. The appearance of these phenomena emerging in the kink–antikink scattering depends critically on the initial collision velocity and the chosen value of the coupling constant parametrizing the family of MSTB models.MINDECO grant MTM2014-57129-C2-1-P and Junta de Castilla y León grants VA057U16 and BU229P18

    Electron-electron interaction and charging effects in graphene quantum dots

    Full text link
    We analyze charging effects in graphene quantum dots. Using a simple model, we show that, when the Fermi level is far from the neutrality point, charging effects lead to a shift in the electrostatic potential and the dot shows standard Coulomb blockade features. Near the neutrality point, surface states are partially occupied and the Coulomb interaction leads to a strongly correlated ground state which can be approximated by either a Wigner crystal or a Laughlin like wave function. The existence of strong correlations modify the transport properties which show non equilibrium effects, similar to those predicted for tunneling into other strongly correlated systems.Comment: Extended version accepted for publication at Phys. Rev.

    Neutral and Charged Polymers at Interfaces

    Full text link
    Chain-like macromolecules (polymers) show characteristic adsorption properties due to their flexibility and internal degrees of freedom, when attracted to surfaces and interfaces. In this review we discuss concepts and features that are relevant to the adsorption of neutral and charged polymers at equilibrium, including the type of polymer/surface interaction, the solvent quality, the characteristics of the surface, and the polymer structure. We pay special attention to the case of charged polymers (polyelectrolytes) that have a special importance due to their water solubility. We present a summary of recent progress in this rapidly evolving field. Because many experimental studies are performed with rather stiff biopolymers, we discuss in detail the case of semi-flexible polymers in addition to flexible ones. We first review the behavior of neutral and charged chains in solution. Then, the adsorption of a single polymer chain is considered. Next, the adsorption and depletion processes in the many-chain case are reviewed. Profiles, changes in the surface tension and polymer surface excess are presented. Mean-field and corrections due to fluctuations and lateral correlations are discussed. The force of interaction between two adsorbed layers, which is important in understanding colloidal stability, is characterized. The behavior of grafted polymers is also reviewed, both for neutral and charged polymer brushes.Comment: a review: 130 pages, 30 ps figures; final form, added reference
    • …
    corecore