9,746 research outputs found

    25 Years of Self-Organized Criticality: Solar and Astrophysics

    Get PDF
    Shortly after the seminal paper {\sl "Self-Organized Criticality: An explanation of 1/f noise"} by Bak, Tang, and Wiesenfeld (1987), the idea has been applied to solar physics, in {\sl "Avalanches and the Distribution of Solar Flares"} by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been undertaken to import physical models into the numerical SOC toy models, such as the discretization of magneto-hydrodynamics (MHD) processes. The novel applications stimulated also vigorous debates about the discrimination between SOC models, SOC-like, and non-SOC processes, such as phase transitions, turbulence, random-walk diffusion, percolation, branching processes, network theory, chaos theory, fractality, multi-scale, and other complexity phenomena. We review SOC studies from the last 25 years and highlight new trends, open questions, and future challenges, as discussed during two recent ISSI workshops on this theme.Comment: 139 pages, 28 figures, Review based on ISSI workshops "Self-Organized Criticality and Turbulence" (2012, 2013, Bern, Switzerland

    Non Asymptotic Properties of Transport and Mixing

    Full text link
    We study relative dispersion of passive scalar in non-ideal cases, i.e. in situations in which asymptotic techniques cannot be applied; typically when the characteristic length scale of the Eulerian velocity field is not much smaller than the domain size. Of course, in such a situation usual asymptotic quantities (the diffusion coefficients) do not give any relevant information about the transport mechanisms. On the other hand, we shall show that the Finite Size Lyapunov Exponent, originally introduced for the predictability problem, appears to be rather powerful in approaching the non-asymptotic transport properties. This technique is applied in a series of numerical experiments in simple flows with chaotic behaviors, in experimental data analysis of drifter and to study relative dispersion in fully developed turbulence.Comment: 19 RevTeX pages + 8 figures included, submitted on Chaos special issue on Transport and Mixin

    A renormalisation approach to excitable reaction-diffusion waves in fractal media

    Get PDF
    Of fundamental importance to wave propagation in a wide range of physical phenomena is the structural geometry of the supporting medium. Recently, there have been several investigations on wave propagation in fractal media. We present here a renormalization approach to the study of reaction-diffusion (RD) wave propagation on finitely ramified fractal structures. In particular we will study a Rinzel-Keller (RK) type model, supporting travelling waves on a Sierpinski gasket (SG), lattice

    A Review of Micro-Contact Physics for Microelectromechanical Systems (MEMS) Metal Contact Switches

    Get PDF
    Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined

    Nonlinear Hamiltonian dynamics of Lagrangian transport and mixing in the ocean

    Full text link
    Methods of dynamical system's theory are used for numerical study of transport and mixing of passive particles (water masses, temperature, salinity, pollutants, etc.) in simple kinematic ocean models composed with the main Eulerian coherent structures in a randomly fluctuating ocean -- a jet-like current and an eddy. Advection of passive tracers in a periodically-driven flow consisting of a background stream and an eddy (the model inspired by the phenomenon of topographic eddies over mountains in the ocean and atmosphere) is analyzed as an example of chaotic particle's scattering and transport. A numerical analysis reveals a nonattracting chaotic invariant set Λ\Lambda that determines scattering and trapping of particles from the incoming flow. It is shown that both the trapping time for particles in the mixing region and the number of times their trajectories wind around the vortex have hierarchical fractal structure as functions of the initial particle's coordinates. Scattering functions are singular on a Cantor set of initial conditions, and this property should manifest itself by strong fluctuations of quantities measured in experiments. The Lagrangian structures in our numerical experiments are shown to be similar to those found in a recent laboratory dye experiment at Woods Hole. Transport and mixing of passive particles is studied in the kinematic model inspired by the interaction of a jet current (like the Gulf Stream or the Kuroshio) with an eddy in a noisy environment. We demonstrate a non-trivial phenomenon of noise-induced clustering of passive particles and propose a method to find such clusters in numerical experiments. These clusters are patches of advected particles which can move together in a random velocity field for comparatively long time

    Fractal-cluster theory and thermodynamic principles of the control and analysis for the self-organizing systems

    Full text link
    The theory of resource distribution in self-organizing systems on the basis of the fractal-cluster method has been presented. This theory consists of two parts: determined and probable. The first part includes the static and dynamic criteria, the fractal-cluster dynamic equations which are based on the fractal-cluster correlations and Fibonacci's range characteristics. The second part of the one includes the foundations of the probable characteristics of the fractal-cluster system. This part includes the dynamic equations of the probable evolution of these systems. By using the numerical researches of these equations for the stationary case the random state field of the one in the phase space of the DD, HH, FF criteria have been obtained. For the socio-economical and biological systems this theory has been tested.Comment: 37 pages, 20 figures, 4 table

    Review of Some Promising Fractional Physical Models

    Full text link
    Fractional dynamics is a field of study in physics and mechanics investigating the behavior of objects and systems that are characterized by power-law non-locality, power-law long-term memory or fractal properties by using integrations and differentiation of non-integer orders, i.e., by methods of the fractional calculus. This paper is a review of physical models that look very promising for future development of fractional dynamics. We suggest a short introduction to fractional calculus as a theory of integration and differentiation of non-integer order. Some applications of integro-differentiations of fractional orders in physics are discussed. Models of discrete systems with memory, lattice with long-range inter-particle interaction, dynamics of fractal media are presented. Quantum analogs of fractional derivatives and model of open nano-system systems with memory are also discussed.Comment: 38 pages, LaTe
    corecore