1,722 research outputs found

    Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms

    Full text link
    We investigate the long-time behavior of solutions of quasilinear hyperbolic systems with transparent boundary conditions when small source terms are incorporated in the system. Even if the finite-time stability of the system is not preserved, it is shown here that an exponential convergence towards the steady state still holds with a decay rate which is proportional to the logarithm of the amplitude of the source term. The result is stated for a system with dynamical boundary conditions in order to deal with initial data that are free of any compatibility condition

    Finite-time stabilization of a network of strings

    Get PDF
    We investigate the finite-time stabilization of a tree-shaped network of strings. Transparent boundary conditions are applied at all the external nodes. At any internal node, in addition to the usual continuity conditions, a modified Kirchhoff law incorporating a damping term αut\alpha u_t with a coefficient α\alpha that may depend on the node is considered. We show that for a convenient choice of the sequence of coefficients α\alpha, any solution of the wave equation on the network becomes constant after a finite time. The condition on the coefficients proves to be sharp at least for a star-shaped tree. Similar results are derived when we replace the transparent boundary condition by the Dirichlet (resp. Neumann) boundary condition at one external node

    On the controllability of entropy solutions of scalar conservation laws at a junction via lyapunov methods

    Full text link
    In this note, we prove a controllability result for entropy solutions of scalar conservation laws on a star-shaped graph. Using a Lyapunov-type approach, we show that, under a monotonicity assumption on the flux, if u and v are two entropy solutions corresponding to different initial data and same in-flux boundary data (at the exterior nodes of the star-shaped graph), then u ≡ v for a sufficiently large time. In order words, we can drive u to the target profile v in a sufficiently large control time by inputting the trace of v at the exterior nodes as in-flux boundary data for u. This result can also be shown to hold on tree-shaped networks by an inductive argument. We illustrate the result with some numerical simulationsThis work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement NO: 694126-DyCon), the Air Force Office of Scientific Research (AFOSR) under Award NO: FA9550-18-1-0242, the Grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain), the Alexander von Humboldt-Professorship program, the European Unions Horizon 2020 research and innovation programme under the Marie SklodowskaCurie grant agreement No.765579-ConFlex, and the Transregio 154 Project “Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks” of the Deutsche Forschungsgemeinschaft. N. De Nitti is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilita e le loro ` Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). We gratefully acknowledge M. Musch for implementing the numerical simulations of Section 4. We also thank B. Andreianov, J.-A. Barcena-Petisco, G. M. Coclite, C. Donadello, and V. Perrollaz for helpful ´ conversations related to the topic of this work. Finally, we express our gratitude to the anonymous referees for their careful reports, which greatly improved the quality of the manuscrip

    Control and stabilization of waves on 1-d networks

    Get PDF
    We present some recent results on control and stabilization of waves on 1-d networks.The fine time-evolution of solutions of wave equations on networks and, consequently, their control theoretical properties, depend in a subtle manner on the topology of the network under consideration and also on the number theoretical properties of the lengths of the strings entering in it. Therefore, the overall picture is quite complex.In this paper we summarize some of the existing results on the problem of controllability that, by classical duality arguments in control theory, can be reduced to that of observability of the adjoint uncontrolled system. The problem of observability refers to that of recovering the total energy of solutions by means of measurements made on some internal or external nodes of the network. They lead, by duality, to controllability results guaranteeing that L 2-controls located on those nodes may drive sufficiently smooth solutions to equilibrium at a final time. Most of our results in this context, obtained in collaboration with R. Dáger, refer to the problem of controlling the network from one single external node. It is, to some extent, the most complex situation since, obviously, increasing the number of controllers enhances the controllability properties of the system. Our methods of proof combine sidewise energy estimates (that in the particular case under consideration can be derived by simply applying the classical d'Alembert's formula), Fourier series representations, non-harmonic Fourier analysis, and number theoretical tools.These control results belong to the class of the so-called open-loop control systems.We then discuss the problem of closed-loop control or stabilization by feedback. We present a recent result, obtained in collaboration with J. Valein, showing that the observability results previously derived, regardless of the method of proof employed, can also be recast a posteriori in the context of stabilization, so to derive explicit decay rates (as) for the energy of smooth solutions. The decay rate depends in a very sensitive manner on the topology of the network and the number theoretical properties of the lengths of the strings entering in it.In the end of the article we also present some challenging open problems

    Prescribed-time control for a class of semilinear hyperbolic PDE-ODE systems

    Get PDF
    A prediction-based controller is shown to achieve prescribed-time stabilization of a nonlinear infinite-dimensional system, which consists of a general boundary controlled first-order semilinear hyperbolic PDE that is bidirectionally interconnected with nonlinear ODEs at its unactuated boundary. The approach uses a coordinate transformation to map the nonlinear system into a form suitable for control. In particular, this transformation is based on predictions of system trajectories, which can be obtained by solving a general nonlinear Volterra integro-differential equation. Then, a prediction-based controller is designed to stabilize the system in prescribed-time. Numerical simulations illustrate the performance of both the prescribed-time controller and an asymptotically stabilizing one, which follows as a special case
    • …
    corecore