31 research outputs found

    New Noise-Tolerant ZNN Models With Predefined-Time Convergence for Time-Variant Sylvester Equation Solving

    Get PDF
    Sylvester equation is often applied to various fields, such as mathematics and control systems due to its importance. Zeroing neural network (ZNN), as a systematic design method for time-variant problems, has been proved to be effective on solving Sylvester equation in the ideal conditions. In this paper, in order to realize the predefined-time convergence of the ZNN model and modify its robustness, two new noise-tolerant ZNNs (NNTZNNs) are established by devising two novelly constructed nonlinear activation functions (AFs) to find the accurate solution of the time-variant Sylvester equation in the presence of various noises. Unlike the original ZNN models activated by known AFs, the proposed two NNTZNN models are activated by two novel AFs, therefore, possessing the excellent predefined-time convergence and strong robustness even in the presence of various noises. Besides, the detailed theoretical analyses of the predefined-time convergence and robustness ability for the NNTZNN models are given by considering different kinds of noises. Simulation comparative results further verify the excellent performance of the proposed NNTZNN models, when applied to online solution of the time-variant Sylvester equation

    A Noise-Tolerant Zeroing Neural Network for Time-Dependent Complex Matrix Inversion Under Various Kinds of Noises

    Get PDF
    Complex-valued time-dependent matrix inversion (TDMI) is extensively exploited in practical industrial and engineering fields. Many current neural models are presented to find the inverse of a matrix in an ideal noise-free environment. However, the outer interferences are normally believed to be ubiquitous and avoidable in practice. If these neural models are applied to complex-valued TDMI in a noise environment, they need to take a lot of precious time to deal with outer noise disturbances in advance. Thus, a noise-suppression model is urgent to be proposed to address this problem. In this article, a complex-valued noise-tolerant zeroing neural network (CVNTZNN) on the basis of an integral-type design formula is established and investigated for finding complex-valued TDMI under a wide variety of noises. Furthermore, both convergence and robustness of the CVNTZNN model are carefully analyzed and rigorously proved. For comparison and verification purposes, the existing zeroing neural network (ZNN) and gradient neural network (GNN) have been presented to address the same problem under the same conditions. Numerical simulation consequences demonstrate the effectiveness and excellence of the proposed CVNTZNN model for complex-valued TDMI under various kinds of noises, by comparing the existing ZNN and GNN models

    Design and Comprehensive Analysis of a Noise-Tolerant ZNN Model With Limited-Time Convergence for Time-Dependent Nonlinear Minimization

    Get PDF
    Zeroing neural network (ZNN) is a powerful tool to address the mathematical and optimization problems broadly arisen in the science and engineering areas. The convergence and robustness are always co-pursued in ZNN. However, there exists no related work on the ZNN for time-dependent nonlinear minimization that achieves simultaneously limited-time convergence and inherently noise suppression. In this article, for the purpose of satisfying such two requirements, a limited-time robust neural network (LTRNN) is devised and presented to solve time-dependent nonlinear minimization under various external disturbances. Different from the previous ZNN model for this problem either with limited-time convergence or with noise suppression, the proposed LTRNN model simultaneously possesses such two characteristics. Besides, rigorous theoretical analyses are given to prove the superior performance of the LTRNN model when adopted to solve time-dependent nonlinear minimization under external disturbances. Comparative results also substantiate the effectiveness and advantages of LTRNN via solving a time-dependent nonlinear minimization problem

    Complex Noise-Resistant Zeroing Neural Network for Computing Complex Time-Dependent Lyapunov Equation

    Get PDF
    Complex time-dependent Lyapunov equation (CTDLE), as an important means of stability analysis of control systems, has been extensively employed in mathematics and engineering application fields. Recursive neural networks (RNNs) have been reported as an effective method for solving CTDLE. In the previous work, zeroing neural networks (ZNNs) have been established to find the accurate solution of time-dependent Lyapunov equation (TDLE) in the noise-free conditions. However, noises are inevitable in the actual implementation process. In order to suppress the interference of various noises in practical applications, in this paper, a complex noise-resistant ZNN (CNRZNN) model is proposed and employed for the CTDLE solution. Additionally, the convergence and robustness of the CNRZNN model are analyzed and proved theoretically. For verification and comparison, three experiments and the existing noise-tolerant ZNN (NTZNN) model are introduced to investigate the effectiveness, convergence and robustness of the CNRZNN model. Compared with the NTZNN model, the CNRZNN model has more generality and stronger robustness. Specifically, the NTZNN model is a special form of the CNRZNN model, and the residual error of CNRZNN can converge rapidly and stably to order 10−5 when solving CTDLE under complex linear noises, which is much lower than order 10−1 of the NTZNN model. Analogously, under complex quadratic noises, the residual error of the CNRZNN model can converge to 2∥A∥F/ζ3 quickly and stably, while the residual error of the NTZNN model is divergent

    A Novel Zeroing Neural Network for Solving Time-Varying Quadratic Matrix Equations against Linear Noises

    Get PDF
    The solving of quadratic matrix equations is a fundamental issue which essentially exists in the optimal control domain. However, noises exerted on the coefficients of quadratic matrix equations may affect the accuracy of the solutions. In order to solve the time-varying quadratic matrix equation problem under linear noise, a new error-processing design formula is proposed, and a resultant novel zeroing neural network model is developed. The new design formula incorporates a second-order error-processing manner, and the double-integration-enhanced zeroing neural network (DIEZNN) model is further proposed for solving time-varying quadratic matrix equations subject to linear noises. Compared with the original zeroing neural network (OZNN) model, finite-time zeroing neural network (FTZNN) model and integration-enhanced zeroing neural network (IEZNN) model, the DIEZNN model shows the superiority of its solution under linear noise; that is, when solving the problem of a time-varying quadratic matrix equation in the environment of linear noise, the residual error of the existing model will maintain a large level due to the influence of linear noise, which will eventually lead to the solution’s failure. The newly proposed DIEZNN model can guarantee a normal solution to the time-varying quadratic matrix equation task no matter how much linear noise there is. In addition, the theoretical analysis proves that the neural state of the DIEZNN model can converge to the theoretical solution even under linear noise. The computer simulation results further substantiate the superiority of the DIEZNN model in solving time-varying quadratic matrix equations under linear noise

    Simultaneous identification, tracking control and disturbance rejection of uncertain nonlinear dynamics systems: A unified neural approach

    Get PDF
    Previous works of traditional zeroing neural networks (or termed Zhang neural networks, ZNN) show great success for solving specific time-variant problems of known systems in an ideal environment. However, it is still a challenging issue for the ZNN to effectively solve time-variant problems for uncertain systems without the prior knowledge. Simultaneously, the involvement of external disturbances in the neural network model makes it even hard for time-variant problem solving due to the intensively computational burden and low accuracy. In this paper, a unified neural approach of simultaneous identification, tracking control and disturbance rejection in the framework of the ZNN is proposed to address the time-variant tracking control of uncertain nonlinear dynamics systems (UNDS). The neural network model derived by the proposed approach captures hidden relations between inputs and outputs of the UNDS. The proposed model shows outstanding tracking performance even under the influences of uncertainties and disturbances. Then, the continuous-time model is discretized via Euler forward formula (EFF). The corresponding discrete algorithm and block diagram are also presented for the convenience of implementation. Theoretical analyses on the convergence property and discretization accuracy are presented to verify the performance of the neural network model. Finally, numerical studies, robot applications, performance comparisons and tests demonstrate the effectiveness and advantages of the proposed neural network model for the time-variant tracking control of UNDS

    Design and analysis of three nonlinearly activated ZNN models for solving time-varying linear matrix inequalities in finite time

    Get PDF
    To obtain the superiority property of solving time-varying linear matrix inequalities (LMIs), three novel finite-time convergence zeroing neural network (FTCZNN) models are designed and analyzed in this paper. First, to make the Matlab toolbox calculation processing more conveniently, the matrix vectorization technique is used to transform matrix-valued FTCZNN models into vector-valued FTCZNN models. Then, considering the importance of nonlinear activation functions on the conventional zeroing neural network (ZNN), the sign-bi-power activation function (AF), the improved sign-bi-power AF and the tunable sign-bi-power AF are explored to establish the FTCZNN models. Theoretical analysis shows that the FTCZNN models not only can accelerate the convergence speed, but also can achieve finite-time convergence. Computer numerical results ulteriorly confirm the effectiveness and advantages of the FTCZNN models for finding the solution set of time-varying LMIs

    Proposing, developing and verification of a novel discrete-time zeroing neural network for solving future augmented Sylvester matrix equation

    Get PDF
    In this paper, a novel discrete-time advance zeroing neural network (DT-AZNN) model is proposed, developed and investigated for solving future augmented Sylvester matrix equation (F-ASME). First of all, based on the advance zeroing neural network (AZNN) design formula, a novel continuous-time advance zeroing neural network (CT-AZNN) model is shown for solving continuous-time augmented Sylvester matrix equation (CT-ASME). Secondly, a recently published discretization formula is further investigated with the optimal sampling gap of the discretization formula proposed. Then, for solving F-ASME, a novel DT-AZNN model is proposed based on the discretization formula. Theoretical analyses on the convergence property and the perturbation suppression performance of the DT-AZNN model are provided. Moreover, comparative numerical experimental results are conducted to prove the effectiveness and robustness of the proposed DT-AZNN model for solving F-ASME
    corecore