895 research outputs found

    Reachability of Consensus and Synchronizing Automata

    Full text link
    We consider the problem of determining the existence of a sequence of matrices driving a discrete-time consensus system to consensus. We transform this problem into one of the existence of a product of the transition (stochastic) matrices that has a positive column. We then generalize some results from automata theory to sets of stochastic matrices. We obtain as a main result a polynomial-time algorithm to decide the existence of a sequence of matrices achieving consensus.Comment: Update after revie

    Average Consensus in the Presence of Delays and Dynamically Changing Directed Graph Topologies

    Full text link
    Classical approaches for asymptotic convergence to the global average in a distributed fashion typically assume timely and reliable exchange of information between neighboring components of a given multi-component system. These assumptions are not necessarily valid in practical settings due to varying delays that might affect transmissions at different times, as well as possible changes in the underlying interconnection topology (e.g., due to component mobility). In this work, we propose protocols to overcome these limitations. We first consider a fixed interconnection topology (captured by a - possibly directed - graph) and propose a discrete-time protocol that can reach asymptotic average consensus in a distributed fashion, despite the presence of arbitrary (but bounded) delays in the communication links. The protocol requires that each component has knowledge of the number of its outgoing links (i.e., the number of components to which it sends information). We subsequently extend the protocol to also handle changes in the underlying interconnection topology and describe a variety of rather loose conditions under which the modified protocol allows the components to reach asymptotic average consensus. The proposed algorithms are illustrated via examples.Comment: 37 page

    Products of Generalized Stochastic Sarymsakov Matrices

    Get PDF
    In the set of stochastic, indecomposable, aperiodic (SIA) matrices, the class of stochastic Sarymsakov matrices is the largest known subset (i) that is closed under matrix multiplication and (ii) the infinitely long left-product of the elements from a compact subset converges to a rank-one matrix. In this paper, we show that a larger subset with these two properties can be derived by generalizing the standard definition for Sarymsakov matrices. The generalization is achieved either by introducing an "SIA index", whose value is one for Sarymsakov matrices, and then looking at those stochastic matrices with larger SIA indices, or by considering matrices that are not even SIA. Besides constructing a larger set, we give sufficient conditions for generalized Sarymsakov matrices so that their products converge to rank-one matrices. The new insight gained through studying generalized Sarymsakov matrices and their products has led to a new understanding of the existing results on consensus algorithms and will be helpful for the design of network coordination algorithms

    A stabilization theorem for dynamics of continuous opinions

    Full text link
    A stabilization theorem for processes of opinion dynamics is presented. The theorem is applicable to a wide class of models of continuous opinion dynamics based on averaging (like the models of Hegselmann-Krause and Weisbuch-Deffuant). The analysis detects self-confidence as a driving force of stabilization.Comment: 7 pages, no figures, first time presented at First Bonzenfreies Colloquium on Market Dynamics and Quantitative Economics, Sep 9/10 200

    Approximate Consensus in Highly Dynamic Networks: The Role of Averaging Algorithms

    Full text link
    In this paper, we investigate the approximate consensus problem in highly dynamic networks in which topology may change continually and unpredictably. We prove that in both synchronous and partially synchronous systems, approximate consensus is solvable if and only if the communication graph in each round has a rooted spanning tree, i.e., there is a coordinator at each time. The striking point in this result is that the coordinator is not required to be unique and can change arbitrarily from round to round. Interestingly, the class of averaging algorithms, which are memoryless and require no process identifiers, entirely captures the solvability issue of approximate consensus in that the problem is solvable if and only if it can be solved using any averaging algorithm. Concerning the time complexity of averaging algorithms, we show that approximate consensus can be achieved with precision of ε\varepsilon in a coordinated network model in O(nn+1log1ε)O(n^{n+1} \log\frac{1}{\varepsilon}) synchronous rounds, and in O(ΔnnΔ+1log1ε)O(\Delta n^{n\Delta+1} \log\frac{1}{\varepsilon}) rounds when the maximum round delay for a message to be delivered is Δ\Delta. While in general, an upper bound on the time complexity of averaging algorithms has to be exponential, we investigate various network models in which this exponential bound in the number of nodes reduces to a polynomial bound. We apply our results to networked systems with a fixed topology and classical benign fault models, and deduce both known and new results for approximate consensus in these systems. In particular, we show that for solving approximate consensus, a complete network can tolerate up to 2n-3 arbitrarily located link faults at every round, in contrast with the impossibility result established by Santoro and Widmayer (STACS '89) showing that exact consensus is not solvable with n-1 link faults per round originating from the same node
    corecore