200 research outputs found

    A Novel Distributed Secondary Coordination Control Approach for Islanded Microgrids

    Get PDF
    This paper develops a new distributed secondary cooperative control scheme to coordinate distributed generators (DGs) in islanded microgrids (MGs). A finite time frequency regulation strategy containing a consensus-based distributed active power regulator is presented, which can not only guarantee the active power sharing but also enable all DGs' frequencies to converge to the reference value within a finite time. This enables the frequency and voltage control designs to be separated. Then an observer-based distributed voltage regulator involving certain reactive power sharing constraints is proposed, which allows different set points for different DGs and, thus, accounts for the line impedance effects. The steady-state performance analysis shows that the voltage regulator can accurately address the issue of global voltage regulation and accurate reactive power sharing. Moreover, all the distributed controllers are equipped with bounded control inputs to suppress the transient overshoot, and they are implemented through sparse communication networks. The effectiveness of the control in case of load variation, plug-and-play capability, communication topology change, link failure, time delays, and data drop-out are verified by the simulation of an islanded MG in MATLAB/SimPowerSystems

    Distributed Control Strategies for Microgrids: An Overview

    Get PDF
    There is an increasing interest and research effort focused on the analysis, design and implementation of distributed control systems for AC, DC and hybrid AC/DC microgrids. It is claimed that distributed controllers have several advantages over centralised control schemes, e.g., improved reliability, flexibility, controllability, black start operation, robustness to failure in the communication links, etc. In this work, an overview of the state-of-the-art of distributed cooperative control systems for isolated microgrids is presented. Protocols for cooperative control such as linear consensus, heterogeneous consensus and finite-time consensus are discussed and reviewed in this paper. Distributed cooperative algorithms for primary and secondary control systems, including (among others issues) virtual impedance, synthetic inertia, droop-free control, stability analysis, imbalance sharing, total harmonic distortion regulation, are also reviewed and discussed in this survey. Tertiary control systems, e.g., for economic dispatch of electric energy, based on cooperative control approaches, are also addressed in this work. This review also highlights existing issues, research challenges and future trends in distributed cooperative control of microgrids and their future applications

    Distributed Apportioning in a Power Network for providing Demand Response Services

    Full text link
    Greater penetration of Distributed Energy Resources (DERs) in power networks requires coordination strategies that allow for self-adjustment of contributions in a network of DERs, owing to variability in generation and demand. In this article, a distributed scheme is proposed that enables a DER in a network to arrive at viable power reference commands that satisfies the DERs local constraints on its generation and loads it has to service, while, the aggregated behavior of multiple DERs in the network and their respective loads meet the ancillary services demanded by the grid. The Net-load Management system for a single unit is referred to as the Local Inverter System (LIS) in this article . A distinguishing feature of the proposed consensus based solution is the distributed finite time termination of the algorithm that allows each LIS unit in the network to determine power reference commands in the presence of communication delays in a distributed manner. The proposed scheme allows prioritization of Renewable Energy Sources (RES) in the network and also enables auto-adjustment of contributions from LIS units with lower priority resources (non-RES). The methods are validated using hardware-in-the-loop simulations with Raspberry PI devices as distributed control units, implementing the proposed distributed algorithm and responsible for determining and dispatching realtime power reference commands to simulated power electronics interface emulating LIS units for demand response.Comment: 7 pages, 11 Figures, IEEE International Conference on Smart Grid Communication

    On the Robust Control and Optimization Strategies for Islanded Inverter-Based Microgrids

    Get PDF
    In recent years, the concept of Microgrids (MGs) has become more popular due to a significant integration of renewable energy sources (RESs) into electric power systems. Microgrids are small-scale power grids consisting of localized grouping of heterogeneous Distributed Generators (DGs), storage systems, and loads. MGs may operate either in autonomous islanded mode or connected to the main power system. Despite the significant benefits of increasing RESs, many new challenges raise in controlling MGs. Hence, a three layered hierarchical architecture consisting of three control loops closed on the DGs dynamics has been introduced for MGs. The inner loop is called Primary Control (PC), and it provides the references for the DG’s DC-AC power converters. In general, the PC is implemented in a decentralized way with the aim to establish, by means of a droop control term, the desired sharing of power among DGs while preserving the MG stability. Then, because of inverterbased DGs have no inertia, a Secondary Control (SC) layer is needed to compensate the frequency and voltage deviations introduced by the PC’s droop control terms. Finally, an operation control is designed to optimize the operation of the MGs by providing power setpoints to the lower control layers. This thesis is mainly devoted to the design of robust distributed secondary frequency and voltage restoration control strategies for AC MGs to avoid central controllers and complexity of communication networks. Different distributed strategies are proposed in this work: (i) Robust Adaptive Distributed SC with Communication delays (ii) Robust Optimal Distributed Voltage SC with Communication Delays and (iii) Distributed Finite-Time SC by Coupled Sliding-Mode Technique. In all three proposed approaches, the problem is addressed in a multi-agent fashion where the generator plays the role of cooperative agents communicating over a network and physically coupled through the power system. The first approach provides an exponentially converging voltage and frequency restoration rate in the presence of both, model uncertainties, and multiple time-varying delays in the DGs’s communications. This approach consist of two terms: 1) a decentralized Integral Sliding Mode Control (ISMC) aimed to enforce each agent (DG) to behaves as reference unperturbed dynamic; 2) an ad-hoc designed distributed protocol aimed to globally, exponentially, achieves the frequency and voltage restoration while fulfilling the power-sharing constraints in spite of the communication delays. The second approach extends the first one by including an optimization algorithm to find the optimal control gains and estimate the corresponding maximum delay tolerated by the controlled system. In the third approach, the problem of voltage and frequency restoration as well as active power sharing are solved in finite-time by exploiting delay-free communications among DGs and considering model uncertainties. In this approach, for DGs with no direct access to their reference values, a finite-time distributed sliding mode estimator is implemented for both secondary frequency and voltage schemes. The estimator determines local estimates of the global reference values of the voltage and frequency for DGs in a finite time and provides this information for the distributed SC schemes. This dissertation also proposes a novel certainty Model Predictive Control (MPC) approach for the operation of islanded MG with very high share of renewable energy sources. To this aim, the conversion losses of storage units are formulated by quadratic functions to reduce the error in storage units state of charge prediction

    Active power sharing and frequency regulation in inverter-based islanded microgrids subject to clock drifts, damage in power links and loss of communications

    Get PDF
    Tesi en modalitat de compendi de publicacions; hi ha diferents seccions retallades per drets de l'editorMicrogrids (MGs) are small-scale power systems containing storage elements, loads and distributed generators that are interfaced with the electric network via power electronic inverters. When an MG is in islanded mode, its dynamics are no longer dominated by the main grid. Then, inverters, driven by digital processors that may exchange data over digital communication, must act as voltage source inverters (VSIs) to take coordinated actions to ensure power quality and supply. The scope of this thesis is bounded to control strategies for active power sharing and frequency regulation in islanded MGs. The focus is on the analysis of prototype control policies when operating conditions are no longer ideal. In particular, the thesis covers the effect that a) clock drifts of digital processors, b) damage in power transmission lines, and c) failures in digital communications have in control performance. The work is submitted as a compendium of publications, including journal and international conference papers, where two main areas of research can be distinguished. The first area refers to the analysis of the effect that clock drifts have on frequency regulation and active power sharing. VSIs digital processors are equipped with oscillators, which run at not necessarily identical frequencies. As consequence, the local clocks in the physically distributed VSIs may differ. This part, reported in two conference papers and one journal paper, investigates state-of-the-art control policies when clocks of the computational devices drift. The contributions related to this part are a) the reformulation of existing control policies in terms of clock drifts, b) the steady-state analysis of these policies that offers analytical expressions to quantify the impact that drifts have on frequency and active power equilibrium points, c) the closed-loop model capable of accommodating all the policies, d) the stability analysis of the equilibrium points, and e) the experimental results. The second area copes with the analysis of the effect that electrical and communication failures have on frequency regulation and active power sharing. This investigation focuses on distributed/cooperative control policies where each inverter control action is computed using both local measures and data received from other inverters within the MG. This part, reported in one conference paper and two journal papers, investigates two control policies when the considered failures in terms of damage in power links and/or loss of communication between inverters provoke partitions within the MG. The contributions related to this part are a) the formulation of the MG as two connected graphs corresponding to the electrical and communication networks where both type of failures lead to disconnected electrical/communication sub-graphs, named partitions, that co-exist within the MG, b) the closed-loop model integrating the two graph Laplacian matrices, c) the stability analysis that identifies which type of partitions may lead to MG instability, d) the steady-state analysis that indicates how to compute the equilibrium points for the case of stable dynamics, e) a new control strategy based on switched control principles that permits avoiding the instability scenario, and f) the experimental results. For the purpose of verifying the operational performance of the analytical results, diverse experiments on a laboratory MG have been performed. The outcomes obtained are discussed and analyzed in terms of the objectives sought. Finally, conclusions and future research lines complete the thesis.Las microredes (MG) son sistemas de energía a pequeña escala que contienen elementos de almacenamiento, cargas y generadores distribuidos que están conectados con la red eléctrica a través de inversores de potencia. Cuando una MG está en modo aislado, su dinámica no está dominada por la red principal. Así, los inversores, comandados por procesadores digitales que pueden intercambiar información a través de comunicaciones digitales, deben actuar como fuentes de voltaje para ejecutar acciones coordinadas que garanticen el suministro de energía. Esta tesis se enmarca dentro de estrategias de control de última generación para compartir potencia activa y regular frecuencia en MG aisladas basadas en inversores. Su enfoque se centra en analizar estas políticas cuando las condiciones de operación no son ideales. En particular, la tesis cubre el efecto que a) desviaciones del reloj de los procesadores digitales, b) daños en las líneas de transmisión de energía, y c) fallas en las comunicaciones digitales, provocan en el rendimiento de control. El trabajo se presenta como un compendio que incluye publicaciones de revistas y de conferencias internacionales, donde se pueden distinguir dos temas principales de investigación. El primer tema comprende el análisis del efecto que tienen las desviaciones de reloj sobre la regulación de frecuencia y la compartición de potencia activa. Los procesadores de los inversores están equipados con osciladores que funcionan a frecuencias no necesariamente idénticas. Como consecuencia, los relojes locales en los inversores distribuidos físicamente, pueden diferir. Esta parte, descrita a través de dos artículos de conferencia y uno de revista, analiza el comportamiento de las políticas de control cuando los relojes de los dispositivos computacionales se desvían. Las contribuciones relacionadas con este tema son a) reformulación de las políticas de control de última generación en términos de desviaciones de reloj, b) análisis de estado estacionario de estas estrategias que ofrece expresiones analíticas para cuantificar el impacto que las desviaciones de reloj tienen sobre los puntos de equilibrio de frecuencia y potencia activa, c) modelo de lazo cerrado adaptable a todas las políticas, d) análisis de estabilidad de los puntos de equilibrio, y e) resultados experimentales. El segundo tema hace frente al análisis del efecto que las fallas eléctricas y de comunicaciones tienen sobre la regulación de frecuencia y el uso compartido de potencia activa. Esta parte se centra en políticas de control distribuido/cooperativo donde cada acción de control del inversor se calcula utilizando medidas locales y datos recibidos de otros inversores de la MG. Esta parte, descrita a través de un artículo de conferencia y dos de revista, investiga dos políticas de control cuando particiones en la MG son provocadas por daños en los enlaces de alimentación y/o por pérdida de comunicación entre inversores. Las contribuciones relacionadas con este tema son a) formulación de la MG como dos grafos correspondientes a las redes eléctrica y de comunicación donde ambos tipos de fallas conducen a sub-grafos eléctricos/comunicacionales desconectados, llamados particiones, que coexisten dentro de la MG, b) modelo de lazo cerrado que integra las matrices Laplacianas de los dos grafos, c) análisis de estabilidad que identifica las particiones que pueden conducir a inestabilidad en la MG, d) análisis de estado estacionario para calcular puntos de equilibrio cuando la dinámica es estable, e) nueva estrategia basada en principios de control conmutado para evitar el escenario de inestabilidad, y f) resultados experimentales. Con el fin de verificar el rendimiento operativo de los resultados analíticos, se han realizado diversos experimentos sobre una microred de laboratorio, los mismos que se discuten en términos de los objetivos de la tesis. El trabajo finaliza con las conclusionesPostprint (published version

    High-bandwidth Secondary Voltage and Frequency Control of VSC-based AC Microgrid

    Get PDF
    corecore