30,375 research outputs found

    An adaptive fixed-mesh ALE method for free surface flows

    Get PDF
    In this work we present a Fixed-Mesh ALE method for the numerical simulation of free surface flows capable of using an adaptive finite element mesh covering a background domain. This mesh is successively refined and unrefined at each time step in order to focus the computational effort on the spatial regions where it is required. Some of the main ingredients of the formulation are the use of an Arbitrary-Lagrangian–Eulerian formulation for computing temporal derivatives, the use of stabilization terms for stabilizing convection, stabilizing the lack of compatibility between velocity and pressure interpolation spaces, and stabilizing the ill-conditioning introduced by the cuts on the background finite element mesh, and the coupling of the algorithm with an adaptive mesh refinement procedure suitable for running on distributed memory environments. Algorithmic steps for the projection between meshes are presented together with the algebraic fractional step approach used for improving the condition number of the linear systems to be solved. The method is tested in several numerical examples. The expected convergence rates both in space and time are observed. Smooth solution fields for both velocity and pressure are obtained (as a result of the contribution of the stabilization terms). Finally, a good agreement between the numerical results and the reference experimental data is obtained.Postprint (published version

    Almost Sure Stabilization for Adaptive Controls of Regime-switching LQ Systems with A Hidden Markov Chain

    Full text link
    This work is devoted to the almost sure stabilization of adaptive control systems that involve an unknown Markov chain. The control system displays continuous dynamics represented by differential equations and discrete events given by a hidden Markov chain. Different from previous work on stabilization of adaptive controlled systems with a hidden Markov chain, where average criteria were considered, this work focuses on the almost sure stabilization or sample path stabilization of the underlying processes. Under simple conditions, it is shown that as long as the feedback controls have linear growth in the continuous component, the resulting process is regular. Moreover, by appropriate choice of the Lyapunov functions, it is shown that the adaptive system is stabilizable almost surely. As a by-product, it is also established that the controlled process is positive recurrent

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Adaptive Control By Regulation-Triggered Batch Least-Squares Estimation of Non-Observable Parameters

    Get PDF
    The paper extends a recently proposed indirect, certainty-equivalence, event-triggered adaptive control scheme to the case of non-observable parameters. The extension is achieved by using a novel Batch Least-Squares Identifier (BaLSI), which is activated at the times of the events. The BaLSI guarantees the finite-time asymptotic constancy of the parameter estimates and the fact that the trajectories of the closed-loop system follow the trajectories of the nominal closed-loop system ("nominal" in the sense of the asymptotic parameter estimate, not in the sense of the true unknown parameter). Thus, if the nominal feedback guarantees global asymptotic stability and local exponential stability, then unlike conventional adaptive control, the newly proposed event-triggered adaptive scheme guarantees global asymptotic regulation with a uniform exponential convergence rate. The developed adaptive scheme is tested to a well-known control problem: the state regulation of the wing-rock model. Comparisons with other adaptive schemes are provided for this particular problem.Comment: 29 pages, 12 figure
    • …
    corecore