35,346 research outputs found

    Quantum, Stochastic, and Pseudo Stochastic Languages with Few States

    Full text link
    Stochastic languages are the languages recognized by probabilistic finite automata (PFAs) with cutpoint over the field of real numbers. More general computational models over the same field such as generalized finite automata (GFAs) and quantum finite automata (QFAs) define the same class. In 1963, Rabin proved the set of stochastic languages to be uncountable presenting a single 2-state PFA over the binary alphabet recognizing uncountably many languages depending on the cutpoint. In this paper, we show the same result for unary stochastic languages. Namely, we exhibit a 2-state unary GFA, a 2-state unary QFA, and a family of 3-state unary PFAs recognizing uncountably many languages; all these numbers of states are optimal. After this, we completely characterize the class of languages recognized by 1-state GFAs, which is the only nontrivial class of languages recognized by 1-state automata. Finally, we consider the variations of PFAs, QFAs, and GFAs based on the notion of inclusive/exclusive cutpoint, and present some results on their expressive power.Comment: A new version with new results. Previous version: Arseny M. Shur, Abuzer Yakaryilmaz: Quantum, Stochastic, and Pseudo Stochastic Languages with Few States. UCNC 2014: 327-33

    Quantum, stochastic, and pseudo stochastic languages with few states

    Full text link
    Stochastic languages are the languages recognized by probabilistic finite automata (PFAs) with cutpoint over the field of real numbers. More general computational models over the same field such as generalized finite automata (GFAs) and quantum finite automata (QFAs) define the same class. In 1963, Rabin proved the set of stochastic languages to be uncountable presenting a single 2-state PFA over the binary alphabet recognizing uncountably many languages depending on the cutpoint. In this paper, we show the same result for unary stochastic languages. Namely, we exhibit a 2-state unary GFA, a 2-state unary QFA, and a family of 4-state unary PFAs recognizing uncountably many languages. After this, we completely characterize the class of languages recognized by 1-state GFAs, which is the only nontrivial class of languages recognized by 1-state automata. © 2014 Springer International Publishing Switzerland

    Computation of moments for probabilistic finite-state automata

    Full text link
    [EN] The computation of moments of probabilistic finite-state automata (PFA) is researched in this article. First, the computation of moments of the length of the paths is introduced for general PFA, and then, the computation of moments of the number of times that a symbol appears in the strings generated by the PFA is described. These computations require a matrix inversion. Acyclic PFA, such as word graphs, are quite common in many practical applications. Algorithms for the efficient computation of the moments for acyclic PFA are also presented in this paper.This work has been partially supported by the Ministerio de Ciencia y Tecnologia under the grant TIN2017-91452-EXP (IBEM), by the Generalitat Valenciana under the grant PROMETE0/2019/121 (DeepPattern), and by the grant "Ayudas Fundacion BBVA a equipos de investigacion cientifica 2018" (PR[8]_HUM_C2_0087).Sánchez Peiró, JA.; Romero, V. (2020). Computation of moments for probabilistic finite-state automata. Information Sciences. 516:388-400. https://doi.org/10.1016/j.ins.2019.12.052S388400516Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sjölander, K., Underwood, R. C., & Haussler, D. (1994). Stochastic context-free grammers for tRNA modeling. Nucleic Acids Research, 22(23), 5112-5120. doi:10.1093/nar/22.23.5112Álvaro, F., Sánchez, J.-A., & Benedí, J.-M. (2016). An integrated grammar-based approach for mathematical expression recognition. Pattern Recognition, 51, 135-147. doi:10.1016/j.patcog.2015.09.013Mohri, M., Pereira, F., & Riley, M. (2002). Weighted finite-state transducers in speech recognition. Computer Speech & Language, 16(1), 69-88. doi:10.1006/csla.2001.0184Casacuberta, F., & Vidal, E. (2004). Machine Translation with Inferred Stochastic Finite-State Transducers. Computational Linguistics, 30(2), 205-225. doi:10.1162/089120104323093294Ortmanns, S., Ney, H., & Aubert, X. (1997). A word graph algorithm for large vocabulary continuous speech recognition. Computer Speech & Language, 11(1), 43-72. doi:10.1006/csla.1996.0022Soule, S. (1974). Entropies of probabilistic grammars. Information and Control, 25(1), 57-74. doi:10.1016/s0019-9958(74)90799-2Justesen, J., & Larsen, K. J. (1975). On probabilistic context-free grammars that achieve capacity. Information and Control, 29(3), 268-285. doi:10.1016/s0019-9958(75)90437-4Hernando, D., Crespi, V., & Cybenko, G. (2005). Efficient Computation of the Hidden Markov Model Entropy for a Given Observation Sequence. IEEE Transactions on Information Theory, 51(7), 2681-2685. doi:10.1109/tit.2005.850223Nederhof, M.-J., & Satta, G. (2008). Computation of distances for regular and context-free probabilistic languages. Theoretical Computer Science, 395(2-3), 235-254. doi:10.1016/j.tcs.2008.01.010CORTES, C., MOHRI, M., RASTOGI, A., & RILEY, M. (2008). ON THE COMPUTATION OF THE RELATIVE ENTROPY OF PROBABILISTIC AUTOMATA. International Journal of Foundations of Computer Science, 19(01), 219-242. doi:10.1142/s0129054108005644Ilic, V. M., Stankovi, M. S., & Todorovic, B. T. (2011). Entropy Message Passing. IEEE Transactions on Information Theory, 57(1), 375-380. doi:10.1109/tit.2010.2090235Booth, T. L., & Thompson, R. A. (1973). Applying Probability Measures to Abstract Languages. IEEE Transactions on Computers, C-22(5), 442-450. doi:10.1109/t-c.1973.223746Thompson, R. A. (1974). Determination of Probabilistic Grammars for Functionally Specified Probability-Measure Languages. IEEE Transactions on Computers, C-23(6), 603-614. doi:10.1109/t-c.1974.224001Wetherell, C. S. (1980). Probabilistic Languages: A Review and Some Open Questions. ACM Computing Surveys, 12(4), 361-379. doi:10.1145/356827.356829Sanchez, J.-A., & Benedi, J.-M. (1997). Consistency of stochastic context-free grammars from probabilistic estimation based on growth transformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9), 1052-1055. doi:10.1109/34.615455Hutchins, S. E. (1972). Moments of string and derivation lengths of stochastic context-free grammars. Information Sciences, 4(2), 179-191. doi:10.1016/0020-0255(72)90011-4Heim, A., Sidorenko, V., & Sorger, U. (2008). Computation of distributions and their moments in the trellis. Advances in Mathematics of Communications, 2(4), 373-391. doi:10.3934/amc.2008.2.373Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., & Carrasco, R. C. (2005). Probabilistic finite-state machines - part I. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(7), 1013-1025. doi:10.1109/tpami.2005.147Sánchez, J. A., Rocha, M. A., Romero, V., & Villegas, M. (2018). On the Derivational Entropy of Left-to-Right Probabilistic Finite-State Automata and Hidden Markov Models. Computational Linguistics, 44(1), 17-37. doi:10.1162/coli_a_0030

    The minimal probabilistic and quantum finite automata recognizing uncountably many languages with fixed cutpoints

    Get PDF
    It is known that 2-state binary and 3-state unary probabilistic finite automata and 2-state unary quantum finite automata recognize uncountably many languages with cutpoints. These results have been obtained by associating each recognized language with a cutpoint and then by using the fact that there are uncountably many cutpoints. In this note, we prove the same results for fixed cutpoints: each recognized language is associated with an automaton (i.e., algorithm), and the proofs use the fact that there are uncountably many automata. For each case, we present a new construction.Comment: 12 pages, minor revisions, changing the format to "dmtcs-episciences" styl
    corecore