1,809 research outputs found

    Euler Characteristics of Categories and Homotopy Colimits

    Get PDF
    In a previous article, we introduced notions of finiteness obstruction, Euler characteristic, and L^2-Euler characteristic for wide classes of categories. In this sequel, we prove the compatibility of those notions with homotopy colimits of I-indexed categories where I is any small category admitting a finite I-CW-model for its I-classifying space. Special cases of our Homotopy Colimit Formula include formulas for products, homotopy pushouts, homotopy orbits, and transport groupoids. We also apply our formulas to Haefliger complexes of groups, which extend Bass--Serre graphs of groups to higher dimensions. In particular, we obtain necessary conditions for developability of a finite complex of groups from an action of a finite group on a finite category without loops.Comment: 44 pages. This final version will appear in Documenta Mathematica. Remark 8.23 has been improved, discussion of Grothendieck construction has been slightly expanded at the beginning of Section 3, and a few other minor improvements have been incoporate

    Discrete quantum geometries and their effective dimension

    Get PDF
    In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension dd on low energy scales to a real number 0<α<d0<\alpha<d on high energy scales. In the particular case of α=1\alpha=1 these results allow to understand the quantum geometry as effectively fractal.Comment: PhD thesis, Humboldt-Universit\"at zu Berlin; urn:nbn:de:kobv:11-100232371; http://edoc.hu-berlin.de/docviews/abstract.php?id=4204

    Quasiconvex Programming

    Full text link
    We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization technique in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics.Comment: 33 pages, 14 figure

    A geometry of information, I: Nerves, posets and differential forms

    Get PDF
    The main theme of this workshop (Dagstuhl seminar 04351) is `Spatial Representation: Continuous vs. Discrete'. Spatial representation has two contrasting but interacting aspects (i) representation of spaces' and (ii) representation by spaces. In this paper, we will examine two aspects that are common to both interpretations of the theme, namely nerve constructions and refinement. Representations change, data changes, spaces change. We will examine the possibility of a `differential geometry' of spatial representations of both types, and in the sequel give an algebra of differential forms that has the potential to handle the dynamical aspect of such a geometry. We will discuss briefly a conjectured class of spaces, generalising the Cantor set which would seem ideal as a test-bed for the set of tools we are developing.Comment: 28 pages. A version of this paper appears also on the Dagstuhl seminar portal http://drops.dagstuhl.de/portals/04351

    Euler characteristics of categories and homotopy colimits

    Get PDF
    "Vegeu el resum a l'inici del document del fitxer adjunt"
    • 

    corecore