1,537 research outputs found

    Finite-Repetition threshold for infinite ternary words

    Get PDF
    The exponent of a word is the ratio of its length over its smallest period. The repetitive threshold r(a) of an a-letter alphabet is the smallest rational number for which there exists an infinite word whose finite factors have exponent at most r(a). This notion was introduced in 1972 by Dejean who gave the exact values of r(a) for every alphabet size a as it has been eventually proved in 2009. The finite-repetition threshold for an a-letter alphabet refines the above notion. It is the smallest rational number FRt(a) for which there exists an infinite word whose finite factors have exponent at most FRt(a) and that contains a finite number of factors with exponent r(a). It is known from Shallit (2008) that FRt(2)=7/3. With each finite-repetition threshold is associated the smallest number of r(a)-exponent factors that can be found in the corresponding infinite word. It has been proved by Badkobeh and Crochemore (2010) that this number is 12 for infinite binary words whose maximal exponent is 7/3. We show that FRt(3)=r(3)=7/4 and that the bound is achieved with an infinite word containing only two 7/4-exponent words, the smallest number. Based on deep experiments we conjecture that FRt(4)=r(4)=7/5. The question remains open for alphabets with more than four letters. Keywords: combinatorics on words, repetition, repeat, word powers, word exponent, repetition threshold, pattern avoidability, word morphisms.Comment: In Proceedings WORDS 2011, arXiv:1108.341

    Fewest repetitions in infinite binary words

    Get PDF
    A square is the concatenation of a nonempty word with itself. A word has period p if its letters at distance p match. The exponent of a nonempty word is the quotient of its length over its smallest period. In this article we give a proof of the fact that there exists an infinite binary word which contains finitely many squares and simultaneously avoids words of exponent larger than 7/3. Our infinite word contains 12 squares, which is the smallest possible number of squares to get the property, and 2 factors of exponent 7/3. These are the only factors of exponent larger than 2. The value 7/3 introduces what we call the finite-repetition threshold of the binary alphabet. We conjecture it is 7/4 for the ternary alphabet, like its repetitive threshold

    Ten Conferences WORDS: Open Problems and Conjectures

    Full text link
    In connection to the development of the field of Combinatorics on Words, we present a list of open problems and conjectures that were stated during the ten last meetings WORDS. We wish to continually update the present document by adding informations concerning advances in problems solving

    Complement Avoidance in Binary Words

    Full text link
    The complement x\overline{x} of a binary word xx is obtained by changing each 00 in xx to 11 and vice versa. We study infinite binary words w\bf w that avoid sufficiently large complementary factors; that is, if xx is a factor of w\bf w then x\overline{x} is not a factor of w\bf w. In particular, we classify such words according to their critical exponents

    Avoiding letter patterns in ternary square-free words

    Full text link
    We consider special patterns of lengths 5 and 6 in a ternary alphabet. We show that some of them are unavoidable in square-free words and prove avoidability of the other ones. Proving the main results, we use Fibonacci words as codes of ternary words in some natural coding system and show that they can be decoded to square- free words avoiding the required patterns. Furthermore, we estimate the minimal local (critical) exponents of square-free words with such avoidance properties. © 2016, Australian National University. All rights reserved
    corecore