18,574 research outputs found

    Optimal railway infrastructure maintenance and repair policies to manage risk under uncertainty with adaptive control

    Get PDF
    The aim of this paper is to apply two adaptive control formulations under uncertainty, say open-loop and closed-loop, to the process of developing maintenance and repair policies for railway infrastructures. To establish the optimal maintenance and repair policies for railway lines, we use a previous design of risk model based on two factors: the criticality and the deterioration ratios of the facilities. Thus, our theory benefits from the Reliability Centered Management methodology application, but it also explicitly models uncertainty in characterizing a facility deterioration rate to decide the optimal policy to maintain the railway infrastructures. This may be the major contribution of this work. To verify the models presented, a computation study has been developed and tested for a real scenario: the railway line Villalba-Cercedilla in Madrid (Spain). Our results demonstrate again that applying any adaptive formulation, the cost of the railway lines maintenance shown is decreased. Moreover applying a Closed Loop Formulation the cost associated to the risk takes smaller values (40% less cost for the same risk than the deterministic approach), but with an Open Loop formulation the generated risk in the railway line is also smaller

    Time series forecasting with the WARIMAX-GARCH method

    Get PDF
    It is well-known that causal forecasting methods that include appropriately chosen Exogenous Variables (EVs) very often present improved forecasting performances over univariate methods. However, in practice, EVs are usually difficult to obtain and in many cases are not available at all. In this paper, a new causal forecasting approach, called Wavelet Auto-Regressive Integrated Moving Average with eXogenous variables and Generalized Auto-Regressive Conditional Heteroscedasticity (WARIMAX-GARCH) method, is proposed to improve predictive performance and accuracy but also to address, at least in part, the problem of unavailable EVs. Basically, the WARIMAX-GARCH method obtains Wavelet “EVs” (WEVs) from Auto-Regressive Integrated Moving Average with eXogenous variables and Generalized Auto-Regressive Conditional Heteroscedasticity (ARIMAX-GARCH) models applied to Wavelet Components (WCs) that are initially determined from the underlying time series. The WEVs are, in fact, treated by the WARIMAX-GARCH method as if they were conventional EVs. Similarly to GARCH and ARIMA-GARCH models, the WARIMAX-GARCH method is suitable for time series exhibiting non-linear characteristics such as conditional variance that depends on past values of observed data. However, unlike those, it can explicitly model frequency domain patterns in the series to help improve predictive performance. An application to a daily time series of dam displacement in Brazil shows the WARIMAX-GARCH method to remarkably outperform the ARIMA-GARCH method, as well as the (multi-layer perceptron) Artificial Neural Network (ANN) and its wavelet version referred to as Wavelet Artificial Neural Network (WANN) as in [1], on statistical measures for both in-sample and out-of-sample forecasting

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    An Optimal Medium Access Control with Partial Observations for Sensor Networks

    Get PDF
    We consider medium access control (MAC) in multihop sensor networks, where only partial information about the shared medium is available to the transmitter. We model our setting as a queuing problem in which the service rate of a queue is a function of a partially observed Markov chain representing the available bandwidth, and in which the arrivals are controlled based on the partial observations so as to keep the system in a desirable mildly unstable regime. The optimal controller for this problem satisfies a separation property: we first compute a probability measure on the state space of the chain, namely the information state, then use this measure as the new state on which the control decisions are based. We give a formal description of the system considered and of its dynamics, we formalize and solve an optimal control problem, and we show numerical simulations to illustrate with concrete examples properties of the optimal control law. We show how the ergodic behavior of our queuing model is characterized by an invariant measure over all possible information states, and we construct that measure. Our results can be specifically applied for designing efficient and stable algorithms for medium access control in multiple-accessed systems, in particular for sensor networks

    A Review of Traffic Signal Control.

    Get PDF
    The aim of this paper is to provide a starting point for the future research within the SERC sponsored project "Gating and Traffic Control: The Application of State Space Control Theory". It will provide an introduction to State Space Control Theory, State Space applications in transportation in general, an in-depth review of congestion control (specifically traffic signal control in congested situations), a review of theoretical works, a review of existing systems and will conclude with recommendations for the research to be undertaken within this project

    Dynamic Service Rate Control for a Single Server Queue with Markov Modulated Arrivals

    Full text link
    We consider the problem of service rate control of a single server queueing system with a finite-state Markov-modulated Poisson arrival process. We show that the optimal service rate is non-decreasing in the number of customers in the system; higher congestion rates warrant higher service rates. On the contrary, however, we show that the optimal service rate is not necessarily monotone in the current arrival rate. If the modulating process satisfies a stochastic monotonicity property the monotonicity is recovered. We examine several heuristics and show where heuristics are reasonable substitutes for the optimal control. None of the heuristics perform well in all the regimes. Secondly, we discuss when the Markov-modulated Poisson process with service rate control can act as a heuristic itself to approximate the control of a system with a periodic non-homogeneous Poisson arrival process. Not only is the current model of interest in the control of Internet or mobile networks with bursty traffic, but it is also useful in providing a tractable alternative for the control of service centers with non-stationary arrival rates.Comment: 32 Pages, 7 Figure
    • 

    corecore