115,788 research outputs found

    A full Eulerian finite difference approach for solving fluid-structure coupling problems

    Full text link
    A new simulation method for solving fluid-structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation (Hirt and Nichols (1981, J. Comput. Phys., 39, 201)), which has been widely used for multiphase flow simulations, is applied to describing the multi-component geometry. The temporal change in the solid deformation is described in the Eulerian frame by updating a left Cauchy-Green deformation tensor, which is used to express constitutive equations for nonlinear Mooney-Rivlin materials. In this paper, various verifications and validations of the present full Eulerian method, which solves the fluid and solid motions on a fixed grid, are demonstrated, and the numerical accuracy involved in the fluid-structure coupling problems is examined.Comment: 38 pages, 27 figures, accepted for publication in J. Comput. Phy

    Cryptography: Mathematical Advancements on Cyber Security

    Get PDF
    The origin of cryptography, the study of encoding and decoding messages, dates back to ancient times around 1900 BC. The ancient Egyptians enlisted the use of basic encryption techniques to conceal personal information. Eventually, the realm of cryptography grew to include the concealment of more important information, and cryptography quickly became the backbone of cyber security. Many companies today use encryption to protect online data, and the government even uses encryption to conceal confidential information. Mathematics played a huge role in advancing the methods of cryptography. By looking at the math behind the most basic methods to the newest methods of cryptography, one can learn how cryptography has advanced and will continue to advance

    On The S-Matrix of Ising Field Theory in Two Dimensions

    Full text link
    We explore the analytic structure of the non-perturbative S-matrix in arguably the simplest family of massive non-integrable quantum field theories: the Ising field theory (IFT) in two dimensions, which may be viewed as the Ising CFT deformed by its two relevant operators, or equivalently, the scaling limit of the Ising model in a magnetic field. Our strategy is that of collider physics: we employ Hamiltonian truncation method (TFFSA) to extract the scattering phase of the lightest particles in the elastic regime, and combine it with S-matrix bootstrap methods based on unitarity and analyticity assumptions to determine the analytic continuation of the 2 to 2 S-matrix element to the complex s-plane. Focusing primarily on the "high temperature" regime in which the IFT interpolates between that of a weakly coupled massive fermion and the E8 affine Toda theory, we will numerically determine 3-particle amplitudes, follow the evolution of poles and certain resonances of the S-matrix, and exclude the possibility of unknown wide resonances up to reasonably high energies.Comment: typos corrected, references added, additional comparison with perturbation theory added. 35 pages, 21 figure

    Eigenfunction structure and scaling of two interacting particles in the one-dimensional Anderson model

    Full text link
    The localization properties of eigenfunctions for two interacting particles in the one-dimensional Anderson model are studied for system sizes up to N=5000N=5000 sites corresponding to a Hilbert space of dimension ≈107\approx 10^7 using the Green function Arnoldi method. The eigenfunction structure is illustrated in position, momentum and energy representation, the latter corresponding to an expansion in non-interacting product eigenfunctions. Different types of localization lengths are computed for parameter ranges in system size, disorder and interaction strengths inaccessible until now. We confirm that one-parameter scaling theory can be successfully applied provided that the condition of NN being significantly larger than the one-particle localization length L1L_1 is verified. The enhancement effect of the two-particle localization length L2L_2 behaving as L2∌L12L_2\sim L_1^2 is clearly confirmed for a certain quite large interval of optimal interactions strengths. Further new results for the interaction dependence in a very large interval, an energy value outside the band center, and different interaction ranges are obtained.Comment: 26 pages, 19 png and pdf figures, high quality gif files for panels of figures 1-4 are available at http://www.quantware.ups-tlse.fr/QWLIB/tipdisorder1d, final published version with minor corrections/revisions, addition of Journal reference and DO
    • 

    corecore