41,793 research outputs found

    Undecidability of L(A)=L(B)L(\mathcal{A})=L(\mathcal{B}) recognized by measure many 1-way quantum automata

    Full text link
    Let L>λ(A)L_{>\lambda}(\mathcal{A}) and Lλ(A)L_{\geq\lambda}(\mathcal{A}) be the languages recognized by {\em measure many 1-way quantum finite automata (MMQFA)} (or,{\em enhanced 1-way quantum finite automata(EQFA)}) A\mathcal{A} with strict, resp. non-strict cut-point λ\lambda. We consider the languages equivalence problem, showing that \begin{itemize} \item {both strict and non-strict languages equivalence are undecidable;} \item {to do this, we provide an additional proof of the undecidability of non-strict and strict emptiness of MMQFA(EQFA), and then reducing the languages equivalence problem to emptiness problem;} \item{Finally, some other Propositions derived from the above results are collected.} \end{itemize}Comment: Readability improved, title change

    Hyper-Minimization for Deterministic Weighted Tree Automata

    Full text link
    Hyper-minimization is a state reduction technique that allows a finite change in the semantics. The theory for hyper-minimization of deterministic weighted tree automata is provided. The presence of weights slightly complicates the situation in comparison to the unweighted case. In addition, the first hyper-minimization algorithm for deterministic weighted tree automata, weighted over commutative semifields, is provided together with some implementation remarks that enable an efficient implementation. In fact, the same run-time O(m log n) as in the unweighted case is obtained, where m is the size of the deterministic weighted tree automaton and n is its number of states.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Unbounded-error quantum computation with small space bounds

    Full text link
    We prove the following facts about the language recognition power of quantum Turing machines (QTMs) in the unbounded error setting: QTMs are strictly more powerful than probabilistic Turing machines for any common space bound s s satisfying s(n)=o(loglogn) s(n)=o(\log \log n) . For "one-way" Turing machines, where the input tape head is not allowed to move left, the above result holds for s(n)=o(logn)s(n)=o(\log n) . We also give a characterization for the class of languages recognized with unbounded error by real-time quantum finite automata (QFAs) with restricted measurements. It turns out that these automata are equal in power to their probabilistic counterparts, and this fact does not change when the QFA model is augmented to allow general measurements and mixed states. Unlike the case with classical finite automata, when the QFA tape head is allowed to remain stationary in some steps, more languages become recognizable. We define and use a QTM model that generalizes the other variants introduced earlier in the study of quantum space complexity.Comment: A preliminary version of this paper appeared in the Proceedings of the Fourth International Computer Science Symposium in Russia, pages 356--367, 200
    corecore