103,891 research outputs found

    Finite Volume Transport Schemes

    Get PDF
    We analyze arbitrary order linear nite volume transport schemes and show asymptotic stability in L1 and L1 for odd order schemes in dimen- sion one. It gives sharp fractional order estimates of convergence for BV solutions. It shows odd order nite volume advection schemes are better than even order nite volume schemes. Therefore the Gibbs phenomena is controled for odd order nite volume schemes. Numerical experiments sustain the theoretical analysis. In particular the oscillations of the Lax- Wendro scheme for small Courant numbers are correlated with its non stability in L1. A scheme of order three is proved to be stable in L1 and L1

    Numerical Methods for Solving Convection-Diffusion Problems

    Full text link
    Convection-diffusion equations provide the basis for describing heat and mass transfer phenomena as well as processes of continuum mechanics. To handle flows in porous media, the fundamental issue is to model correctly the convective transport of individual phases. Moreover, for compressible media, the pressure equation itself is just a time-dependent convection-diffusion equation. For different problems, a convection-diffusion equation may be be written in various forms. The most popular formulation of convective transport employs the divergent (conservative) form. In some cases, the nondivergent (characteristic) form seems to be preferable. The so-called skew-symmetric form of convective transport operators that is the half-sum of the operators in the divergent and nondivergent forms is of great interest in some applications. Here we discuss the basic classes of discretization in space: finite difference schemes on rectangular grids, approximations on general polyhedra (the finite volume method), and finite element procedures. The key properties of discrete operators are studied for convective and diffusive transport. We emphasize the problems of constructing approximations for convection and diffusion operators that satisfy the maximum principle at the discrete level --- they are called monotone approximations. Two- and three-level schemes are investigated for transient problems. Unconditionally stable explicit-implicit schemes are developed for convection-diffusion problems. Stability conditions are obtained both in finite-dimensional Hilbert spaces and in Banach spaces depending on the form in which the convection-diffusion equation is written

    Second-order accurate genuine BGK schemes for the ultra-relativistic flow simulations

    Full text link
    This paper presents second-order accurate genuine BGK (Bhatnagar-Gross-Krook) schemes in the framework of finite volume method for the ultra-relativistic flows. Different from the existing kinetic flux-vector splitting (KFVS) or BGK-type schemes for the ultra-relativistic Euler equations, the present genuine BGK schemes are derived from the analytical solution of the Anderson-Witting model, which is given for the first time and includes the "genuine" particle collisions in the gas transport process. The BGK schemes for the ultra-relativistic viscous flows are also developed and two examples of ultra-relativistic viscous flow are designed. Several 1D and 2D numerical experiments are conducted to demonstrate that the proposed BGK schemes not only are accurate and stable in simulating ultra-relativistic inviscid and viscous flows, but also have higher resolution at the contact discontinuity than the KFVS or BGK-type schemes.Comment: 41 pages, 13 figure

    Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Get PDF
    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes. High order piecewise polynomials are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Our numerical method belongs to the category of direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry directly during the computation of the numerical fluxes. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method, in which the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed with a second order TVD finite volume scheme. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).Comment: 39 pages, 21 figure

    Contributions to the numerical solution of heterogeneous fluid mechanics models

    Get PDF
    A high order projection hybrid finite volume – finite element method is developed to solve incompressible and compressible low Mach number flows. Furthermore, turbulent regimes are also considered thanks to the k–Δ model. The unidimensional advection-diffusion-reaction equation is used to construct, analyze and assess high order finite volume schemes. Two families of methods are studied: Kolgan-type schemes and ADER methodology. A modification of the last one is proposed providing a new numerical method called Local ADER. The designed method is extended to solve the transport-diffusion stage of the three-dimensional projection method. Within the projection stage the pressure correction is computed by a piecewise linear finite element method. Numerical results are presented, aimed at verifying the formal order of accuracy of the schemes and to assess the performance of the method on several realistic test problems

    Dynamical Core Model Intercomparison Project:Tracer Transport Test Cases

    Get PDF
    Three‐dimensional advection tests are required to assess the ability of transport schemes of dynamical cores to model tracer transport on the sphere accurately. A set of three tracer‐transport test cases for three‐dimensional flow is presented. The tests focus on the physical and numerical issues that are relevant to three‐dimensional tracer transport: positivity preservation, inter‐tracer correlations, horizontal–vertical coupling, order of accuracy and choice of vertical coordinate. The first test is a three‐dimensional deformational flow. The second test is a Hadley‐like global circulation. The final test is a solid‐body rotation test in the presence of rapidly varying orography. A variety of assessment metrics, such as error norms, convergence rates and mixing diagnostics, are used. The tests are designed for easy implementation within existing and developing dynamical cores and have been a cornerstone of the 2012 Dynamical Core Model Intercomparison Project ( DCMIP ). Example results are shown using the transport schemes in two dynamical cores: the Community Atmosphere Model finite‐volume dynamical core ( CAM‐FV ) and the cubed‐sphere finite‐volume MCore dynamical core.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107545/1/qj2208.pd

    Development of high-order realizable finite-volume schemes for quadrature-based moment method

    Get PDF
    Kinetic equations containing terms for spatial transport, gravity, fluid drag and particle-particle collisions can be used to model dilute gas-particle flows. However, the enormity of independent variables makes direct numerical simulation of these equations almost impossible for practical problems. A viable alternative is to reformulate the problem in terms of moments of velocity distribution. Recently, a quadrature-based moment method was derived by Fox for approximating solutions to kinetic equation for arbitrary Knudsen number. Fox also described 1st- and 2nd-order finite-volume schemes for solving the equations. The success of the new method is based on a moment-inversion algorithm that is used to calculate non-negative weights and abscissas from moments. The moment-inversion algorithm does not work if the moments are non-realizable, meaning they do not correspond to a distribution function. Not all the finite-volume schemes lead to realizable moments. Desjardins et al. showed that realizability is guaranteed with the 1 st-order finite-volume scheme, but at the expense of excess numerical diffusion. In the present work, the nonrealizability of the standard 2 nd-order finite-volume scheme is demonstrated and a generalized idea for the development of high-order realizable finite-volume schemes for quadrature-based moment methods is presented. This marks a significant improvement in the accuracy of solutions using the quadrature-based moment method as the use of 1st-order scheme to guarantee realizability is no longer a limitation
    • 

    corecore