43,656 research outputs found

    A numerical method for junctions in networks of shallow-water channels

    Full text link
    There is growing interest in developing mathematical models and appropriate numerical methods for problems involving networks formed by, essentially, one-dimensional (1D) domains joined by junctions. Examples include hyperbolic equations in networks of gas tubes, water channels and vessel networks for blood and lymph in the human circulatory system. A key point in designing numerical methods for such applications is the treatment of junctions, i.e. points at which two or more 1D domains converge and where the flow exhibits multidimensional behaviour. This paper focuses on the design of methods for networks of water channels. Our methods adopt the finite volume approach to make full use of the two-dimensional shallow water equations on the true physical domain, locally at junctions, while solving the usual one-dimensional shallow water equations away from the junctions. In addition to mass conservation, our methods enforce conservation of momentum at junctions; the latter seems to be the missing element in methods currently available. Apart from simplicity and robustness, the salient feature of the proposed methods is their ability to successfully deal with transcritical and supercritical flows at junctions, a property not enjoyed by existing published methodologies. Systematic assessment of the proposed methods for a variety of flow configurations is carried out. The methods are directly applicable to other systems, provided the multidimensional versions of the 1D equations are available

    Diffusion-Based Coarse Graining in Hybrid Continuum-Discrete Solvers: Theoretical Formulation and A Priori Tests

    Full text link
    Coarse graining is an important ingredient in many multi-scale continuum-discrete solvers such as CFD--DEM (computational fluid dynamics--discrete element method) solvers for dense particle-laden flows. Although CFD--DEM solvers have become a mature technique that is widely used in multiphase flow research and industrial flow simulations, a flexible and easy-to-implement coarse graining algorithm that can work with CFD solvers of arbitrary meshes is still lacking. In this work, we proposed a new coarse graining algorithm for continuum--discrete solvers for dense particle-laden flows based on solving a transient diffusion equation. Via theoretical analysis we demonstrated that the proposed method is equivalent to the statistical kernel method with a Gaussian kernel, but the current method is much more straightforward to implement in CFD--DEM solvers. \textit{A priori} numerical tests were performed to obtain the solid volume fraction fields based on given particle distributions, the results obtained by using the proposed algorithm were compared with those from other coarse graining methods in the literature (e.g., the particle centroid method, the divided particle volume method, and the two-grid formulation). The numerical tests demonstrated that the proposed coarse graining procedure based on solving diffusion equations is theoretically sound, easy to implement and parallelize in general CFD solvers, and has improved mesh-convergence characteristics compared with existing coarse graining methods. The diffusion-based coarse graining method has been implemented into a CFD--DEM solver, the results of which are presented in a separate work (R. Sun and H. Xiao, Diffusion-based coarse graining in hybrid continuum-discrete solvers: Application in CFD-DEM solvers for particle laden flows)

    Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach

    Get PDF
    We develop a rigid multiblob method for numerically solving the mobility problem for suspensions of passive and active rigid particles of complex shape in Stokes flow in unconfined, partially confined, and fully confined geometries. As in a number of existing methods, we discretize rigid bodies using a collection of minimally-resolved spherical blobs constrained to move as a rigid body, to arrive at a potentially large linear system of equations for the unknown Lagrange multipliers and rigid-body motions. Here we develop a block-diagonal preconditioner for this linear system and show that a standard Krylov solver converges in a modest number of iterations that is essentially independent of the number of particles. For unbounded suspensions and suspensions sedimented against a single no-slip boundary, we rely on existing analytical expressions for the Rotne-Prager tensor combined with a fast multipole method or a direct summation on a Graphical Processing Unit to obtain an simple yet efficient and scalable implementation. For fully confined domains, such as periodic suspensions or suspensions confined in slit and square channels, we extend a recently-developed rigid-body immersed boundary method to suspensions of freely-moving passive or active rigid particles at zero Reynolds number. We demonstrate that the iterative solver for the coupled fluid and rigid body equations converges in a bounded number of iterations regardless of the system size. We optimize a number of parameters in the iterative solvers and apply our method to a variety of benchmark problems to carefully assess the accuracy of the rigid multiblob approach as a function of the resolution. We also model the dynamics of colloidal particles studied in recent experiments, such as passive boomerangs in a slit channel, as well as a pair of non-Brownian active nanorods sedimented against a wall.Comment: Under revision in CAMCOS, Nov 201

    Finite volume approach for the instationary Cosserat rod model describing the spinning of viscous jets

    Full text link
    The spinning of slender viscous jets can be described asymptotically by one-dimensional models that consist of systems of partial and ordinary differential equations. Whereas the well-established string models possess only solutions for certain choices of parameters and set-ups, the more sophisticated rod model that can be considered as ϵ\epsilon-regularized string is generally applicable. But containing the slenderness ratio ϵ\epsilon explicitely in the equations complicates the numerical treatment. In this paper we present the first instationary simulations of a rod in a rotational spinning process for arbitrary parameter ranges with free and fixed jet end, for which the hitherto investigations longed. So we close an existing gap in literature. The numerics is based on a finite volume approach with mixed central, up- and down-winded differences, the time integration is performed by stiff accurate Radau methods

    A flow-pattern map for phase separation using the Navier-Stokes Cahn-Hilliard model

    Full text link
    We use the Navier-Stokes-Cahn-Hilliard model equations to simulate phase separation with flow. We study coarsening - the growth of extended domains wherein the binary mixture phase separates into its component parts. The coarsening is characterized by two competing effects: flow, and the Cahn-Hilliard diffusion term, which drives the phase separation. Based on extensive two-dimensional direct numerical simulations, we construct a flow-pattern map outlining the relative strength of these effects in different parts of the parameter space. The map reveals large regions of parameter space where a standard theory applies, and where the domains grow algebraically in time. However, there are significant parts of the parameter space where the standard theory does not apply. In one region, corresponding to low values of viscosity and diffusion, the coarsening is accelerated compared to the standard theory. Previous studies involving Stokes flow report on this phenomenon; we complete the picture by demonstrating that this anomalous regime occurs not only for Stokes flow, but also, for flows dominated by inertia. In a second region, corresponding to arbitrary viscosities and high Cahn-Hilliard diffusion, the diffusion overwhelms the hydrodynamics altogether, and the latter can effectively be ignored, in contrast to the prediction of the standard scaling theory. Based on further high-resolution simulations in three dimensions, we find that broadly speaking, the above description holds there also, although the formation of the anomalous domains in the low-viscosity-low-diffusion part of the parameter space is delayed in three dimensions compared to two.Comment: 17 pages, 13 figure
    corecore