118 research outputs found

    Non-Oscillatory Hierarchical Reconstruction for Central and Finite Volume Schemes

    Get PDF
    This is the continuation of the paper "central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction" by the same authors. The hierarchical reconstruction introduced therein is applied to central schemes on overlapping cells and to nite volume schemes on non-staggered grids. This takes a new nite volume approach for approximating non-smooth solutions. A critical step for high order nite volume schemes is to reconstruct a nonoscillatory high degree polynomial approximation in each cell out of nearby cell averages. In the paper this procedure is accomplished in two steps: first to reconstruct a high degree polynomial in each cell by using e.g., a central reconstruction, which is easy to do despite the fact that the reconstructed polynomial could be oscillatory; then to apply the hierarchical reconstruction to remove the spurious oscillations while maintaining the high resolution. All numerical computations for systems of conservation laws are performed without characteristic decomposition. In particular, we demonstrate that this new approach can generate essentially non-oscillatory solutions even for 5th order schemes without characteristic decomposition.The research of Y. Liu was supported in part by NSF grant DMS-0511815. The research of C.-W. Shu was supported in part by the Chinese Academy of Sciences while this author was visiting the University of Science and Technology of China (grant 2004-1-8) and the Institute of Computational Mathematics and Scienti c/Engineering Computing. Additional support was provided by ARO grant W911NF-04-1-0291 and NSF grant DMS-0510345. The research of E. Tadmor was supported in part by NSF grant 04-07704 and ONR grant N00014-91-J-1076. The research of M. Zhang was supported in part by the Chinese Academy of Sciences grant 2004-1-8

    Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Get PDF
    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes. High order piecewise polynomials are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Our numerical method belongs to the category of direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry directly during the computation of the numerical fluxes. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method, in which the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed with a second order TVD finite volume scheme. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).Comment: 39 pages, 21 figure

    Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems

    Full text link
    We present a fully adaptive multiresolution scheme for spatially two-dimensional, possibly degenerate reaction-diffusion systems, focusing on combustion models and models of pattern formation and chemotaxis in mathematical biology. Solutions of these equations in these applications exhibit steep gradients, and in the degenerate case, sharp fronts and discontinuities. The multiresolution scheme is based on finite volume discretizations with explicit time stepping. The multiresolution representation of the solution is stored in a graded tree. By a thresholding procedure, namely the elimination of leaves that are smaller than a threshold value, substantial data compression and CPU time reduction is attained. The threshold value is chosen optimally, in the sense that the total error of the adaptive scheme is of the same slope as that of the reference finite volume scheme. Since chemical reactions involve a large range of temporal scales, but are spatially well localized (especially in the combustion model), a locally varying adaptive time stepping strategy is applied. It turns out that local time stepping accelerates the adaptive multiresolution method by a factor of two, while the error remains controlled.Comment: 27 pages, 14 figure

    High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates

    Get PDF
    High-order reconstruction schemes for the solution of hyperbolic conservation laws in orthogonal curvilinear coordinates are revised in the finite volume approach. The formulation employs a piecewise polynomial approximation to the zone-average values to reconstruct left and right interface states from within a computational zone to arbitrary order of accuracy by inverting a Vandermonde-like linear system of equations with spatially varying coefficients. The approach is general and can be used on uniform and non-uniform meshes although explicit expressions are derived for polynomials from second to fifth degree in cylindrical and spherical geometries with uniform grid spacing. It is shown that, in regions of large curvature, the resulting expressions differ considerably from their Cartesian counterparts and that the lack of such corrections can severely degrade the accuracy of the solution close to the coordinate origin. Limiting techniques and monotonicity constraints are revised for conventional reconstruction schemes, namely, the piecewise linear method (PLM), third-order weighted essentially non-oscillatory (WENO) scheme and the piecewise parabolic method (PPM). The performance of the improved reconstruction schemes is investigated in a number of selected numerical benchmarks involving the solution of both scalar and systems of nonlinear equations (such as the equations of gas dynamics and magnetohydrodynamics) in cylindrical and spherical geometries in one and two dimensions. Results confirm that the proposed approach yields considerably smaller errors, higher convergence rates and it avoid spurious numerical effects at a symmetry axis.Comment: 37 pages, 12 Figures. Accepted for publication in Journal of Compuational Physic

    High order asymptotic preserving and well-balanced schemes for the shallow water equations with source terms

    Full text link
    In this study, we investigate the Shallow Water Equations incorporating source terms accounting for Manning friction and a non-flat bottom topology. Our primary focus is on developing and validating numerical schemes that serve a dual purpose: firstly, preserving all steady states within the model, and secondly, maintaining the late-time asymptotic behavior of solutions, which is governed by a diffusion equation and coincides with a long time and stiff friction limit. Our proposed approach draws inspiration from a penalization technique adopted in {\it{[Boscarino et. al, SIAM Journal on Scientific Computing, 2014]}}. By employing an additive implicit-explicit Runge-Kutta method, the scheme can ensure a correct asymptotic behavior for the limiting diffusion equation, without suffering from a parabolic-type time step restriction which often afflicts multiscale problems in the diffusive limit. Numerical experiments are performed to illustrate high order accuracy, asymptotic preserving, and asymptotically accurate properties of the designed schemes

    An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations

    Full text link
    We propose a new Eulerian-Lagrangian Runge-Kutta finite volume method for numerically solving convection and convection-diffusion equations. Eulerian-Lagrangian and semi-Lagrangian methods have grown in popularity mostly due to their ability to allow large time steps. Our proposed scheme is formulated by integrating the PDE on a space-time region partitioned by approximations of the characteristics determined from the Rankine-Hugoniot jump condition; and then rewriting the time-integral form into a time differential form to allow application of Runge-Kutta (RK) methods via the method-of-lines approach. The scheme can be viewed as a generalization of the standard Runge-Kutta finite volume (RK-FV) scheme for which the space-time region is partitioned by approximate characteristics with zero velocity. The high-order spatial reconstruction is achieved using the recently developed weighted essentially non-oscillatory schemes with adaptive order (WENO-AO); and the high-order temporal accuracy is achieved by explicit RK methods for convection equations and implicit-explicit (IMEX) RK methods for convection-diffusion equations. Our algorithm extends to higher dimensions via dimensional splitting. Numerical experiments demonstrate our algorithm's robustness, high-order accuracy, and ability to handle extra large time steps.Comment: 35 pages, 21 figures, submitted to the Journal of Computational Physic
    • …
    corecore