60,730 research outputs found

    Finite time stability conditions for non autonomous continuous systems

    Get PDF
    Finite time stability is defined for continuous non autonomous systems. Starting with a result from Haimo Haimo (1986) we then extend this result to n¡dimensional non autonomous systems through the use of smooth and nonsmooth Lyapunov functions as in Perruquetti and Drakunov (2000). One obtains two different sufficient conditions and a necessary one for finite time stability of continuous non autonomous systems

    Exponential stability for infinite-dimensional non-autonomous port-Hamiltonian Systems

    Full text link
    We study the non-autonomous version of an infinite-dimensional port-Hamiltonian system on an interval [a,b][a, b]. Employing abstract results on evolution families, we show C1C^1-well-posedness of the corresponding Cauchy problem, and thereby existence and uniqueness of classical solutions for sufficiently regular initial data. Further, we demonstrate that a dissipation condition in the style of the dissipation condition sufficient for uniform exponential stability in the autonomous case also leads to a uniform exponential decay of the energy in this non-autonomous setting

    Finite-time Lagrangian transport analysis: Stable and unstable manifolds of hyperbolic trajectories and finite-time Lyapunov exponents

    Get PDF
    We consider issues associated with the Lagrangian characterisation of flow structures arising in aperiodically time-dependent vector fields that are only known on a finite time interval. A major motivation for the consideration of this problem arises from the desire to study transport and mixing problems in geophysical flows where the flow is obtained from a numerical solution, on a finite space-time grid, of an appropriate partial differential equation model for the velocity field. Of particular interest is the characterisation, location, and evolution of "transport barriers" in the flow, i.e. material curves and surfaces. We argue that a general theory of Lagrangian transport has to account for the effects of transient flow phenomena which are not captured by the infinite-time notions of hyperbolicity even for flows defined for all time. Notions of finite-time hyperbolic trajectories, their finite time stable and unstable manifolds, as well as finite-time Lyapunov exponent (FTLE) fields and associated Lagrangian coherent structures have been the main tools for characterizing transport barriers in the time-aperiodic situation. In this paper we consider a variety of examples, some with explicit solutions, that illustrate, in a concrete manner, the issues and phenomena that arise in the setting of finite-time dynamical systems. Of particular significance for geophysical applications is the notion of "flow transition" which occurs when finite-time hyperbolicity is lost, or gained. The phenomena discovered and analysed in our examples point the way to a variety of directions for rigorous mathematical research in this rapidly developing, and important, new area of dynamical systems theory
    corecore