688 research outputs found

    Probabilistic structural mechanics research for parallel processing computers

    Get PDF
    Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    The PARSE Programming Paradigm. Part I: Software Development Methodology. Part II: Software Development Support Tools

    Get PDF
    The programming methodology of PARSE (parallel software environment), a software environment being developed for reconfigurable non-shared memory parallel computers, is described. This environment will consist of an integrated collection of language interfaces, automatic and semi-automatic debugging and analysis tools, and operating system —all of which are made more flexible by the use of a knowledge-based implementation for the tools that make up PARSE. The programming paradigm supports the user freely choosing among three basic approaches /abstractions for programming a parallel machine: logic-based descriptive, sequential-control procedural, and parallel-control procedural programming. All of these result in efficient parallel execution. The current work discusses the methodology underlying PARSE, whereas the companion paper, “The PARSE Programming Paradigm — II: Software Development Support Tools,” details each of the component tools

    Parametric micro-level performance models for parallel computing and parallel implementation of hydrostatic MM5

    Get PDF
    This dissertation presents Parametric micro-level performance models and Parallel implementation of the hydrostatic version of MM5;Parametric micro-level (PM) performance models are introduced to address the important issue of how to realistically model parallel performance. These models can be used to predict execution times and identify performance bottlenecks. The accurate prediction and analysis of execution times is achieved by incorporating precise details of interprocessor communication, memory operations, auxiliary instructions, and effects of communication and computation schedules. The parameters provide the flexibility to study various algorithmic and architectural issues. The development and verification process, parameters and the scope of applicability of these models are discussed. A coherent view of performance is obtained from the execution profiles generated by PM models. The models are targeted at a large class numerical algorithms commonly implemented on both SIMD and MIMD machines. Specific models are presented for matrix multiplication, LU decomposition, and FFT on a 2-D processor array with distributed memory. A case study includes comparison of parallel machines and parallel algorithms. In a comparison of parallel machines, PM models are used to analyze execution times so as to relate the performance to architectural attributes of a machine. In a comparison of parallel algorithms, PM models are used to study performance of two LU decomposition algorithms: non-blocked and blocked. Two algorithms are compared to identify the tradeoffs between them. This analysis is useful to determine an optimum block size for the blocked algorithm. The case study is done on MasPar MP-1 and MP-2 machines;The dissertation also describes the parallel implementation of the hydrostatic version of MM5 (the fifth generation of Mesoscale Model), which has been widely used for climate studies. The model was parallelized in machine-independent manner using the Runtime System Library (RSL), a runtime library for handling message-passing and index transformation. The dissertation discusses validation of the parallel implementation of MM5 using field data and presents performance results. The parallel model was tested on the IBM SP1, a distributed memory parallel computer

    Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    Get PDF
    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership

    Parallel algorithms for atmospheric modelling

    Get PDF

    The CSM testbed software system: A development environment for structural analysis methods on the NAS CRAY-2

    Get PDF
    The Computational Structural Mechanics (CSM) Activity at Langley Research Center is developing methods for structural analysis on modern computers. To facilitate that research effort, an applications development environment has been constructed to insulate the researcher from the many computer operating systems of a widely distributed computer network. The CSM Testbed development system was ported to the Numerical Aerodynamic Simulator (NAS) Cray-2, at the Ames Research Center, to provide a high end computational capability. This paper describes the implementation experiences, the resulting capability, and the future directions for the Testbed on supercomputers
    corecore