7,703 research outputs found

    Around Kolmogorov complexity: basic notions and results

    Full text link
    Algorithmic information theory studies description complexity and randomness and is now a well known field of theoretical computer science and mathematical logic. There are several textbooks and monographs devoted to this theory where one can find the detailed exposition of many difficult results as well as historical references. However, it seems that a short survey of its basic notions and main results relating these notions to each other, is missing. This report attempts to fill this gap and covers the basic notions of algorithmic information theory: Kolmogorov complexity (plain, conditional, prefix), Solomonoff universal a priori probability, notions of randomness (Martin-L\"of randomness, Mises--Church randomness), effective Hausdorff dimension. We prove their basic properties (symmetry of information, connection between a priori probability and prefix complexity, criterion of randomness in terms of complexity, complexity characterization for effective dimension) and show some applications (incompressibility method in computational complexity theory, incompleteness theorems). It is based on the lecture notes of a course at Uppsala University given by the author

    On Resource-bounded versions of the van Lambalgen theorem

    Full text link
    The van Lambalgen theorem is a surprising result in algorithmic information theory concerning the symmetry of relative randomness. It establishes that for any pair of infinite sequences AA and BB, BB is Martin-L\"of random and AA is Martin-L\"of random relative to BB if and only if the interleaved sequence A⊎BA \uplus B is Martin-L\"of random. This implies that AA is relative random to BB if and only if BB is random relative to AA \cite{vanLambalgen}, \cite{Nies09}, \cite{HirschfeldtBook}. This paper studies the validity of this phenomenon for different notions of time-bounded relative randomness. We prove the classical van Lambalgen theorem using martingales and Kolmogorov compressibility. We establish the failure of relative randomness in these settings, for both time-bounded martingales and time-bounded Kolmogorov complexity. We adapt our classical proofs when applicable to the time-bounded setting, and construct counterexamples when they fail. The mode of failure of the theorem may depend on the notion of time-bounded randomness

    Kolmogorov Complexity in perspective. Part I: Information Theory and Randomnes

    Get PDF
    We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts in the same volume. Part I is dedicated to information theory and the mathematical formalization of randomness based on Kolmogorov complexity. This last application goes back to the 60's and 70's with the work of Martin-L\"of, Schnorr, Chaitin, Levin, and has gained new impetus in the last years.Comment: 40 page

    Return times, recurrence densities and entropy for actions of some discrete amenable groups

    Full text link
    Results of Wyner and Ziv and of Ornstein and Weiss show that if one observes the first k outputs of a finite-valued ergodic process, then the waiting time until this block appears again is almost surely asymptotic to 2hk2^{hk}, where hh is the entropy of the process. We examine this phenomenon when the allowed return times are restricted to some subset of times, and generalize the results to processes parameterized by other discrete amenable groups. We also obtain a uniform density version of the waiting time results: For a process on ss symbols, within a given realization, the density of the initial kk-block within larger nn-blocks approaches 2−hk2^{-hk}, uniformly in n>skn>s^k, as kk tends to infinity. Again, similar results hold for processes with other indexing groups.Comment: To appear in Journal d'Analyse Mathematiqu

    Quantum randomness and value indefiniteness

    Full text link
    As computability implies value definiteness, certain sequences of quantum outcomes cannot be computable.Comment: 13 pages, revise

    Pushdown Compression

    Get PDF
    The pressing need for eficient compression schemes for XML documents has recently been focused on stack computation [6, 9], and in particular calls for a formulation of information-lossless stack or pushdown compressors that allows a formal analysis of their performance and a more ambitious use of the stack in XML compression, where so far it is mainly connected to parsing mechanisms. In this paper we introduce the model of pushdown compressor, based on pushdown transducers that compute a single injective function while keeping the widest generality regarding stack computation. The celebrated Lempel-Ziv algorithm LZ78 [10] was introduced as a general purpose compression algorithm that outperforms finite-state compressors on all sequences. We compare the performance of the Lempel-Ziv algorithm with that of the pushdown compressors, or compression algorithms that can be implemented with a pushdown transducer. This comparison is made without any a priori assumption on the data's source and considering the asymptotic compression ratio for infinite sequences. We prove that Lempel-Ziv is incomparable with pushdown compressors
    • …
    corecore