1,016 research outputs found

    Finite element methods for semilinear elliptic stochastic partial differential equations

    Get PDF
    We study finite element methods for semilinear stochastic partial differential equations. Error estimates are established. Numerical examples are also presented to examine our theoretical results

    Adaptive Pseudo-Transient-Continuation-Galerkin Methods for Semilinear Elliptic Partial Differential Equations

    Full text link
    In this paper we investigate the application of pseudo-transient-continuation (PTC) schemes for the numerical solution of semilinear elliptic partial differential equations, with possible singular perturbations. We will outline a residual reduction analysis within the framework of general Hilbert spaces, and, subsequently, employ the PTC-methodology in the context of finite element discretizations of semilinear boundary value problems. Our approach combines both a prediction-type PTC-method (for infinite dimensional problems) and an adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully adaptive PTC-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples.Comment: arXiv admin note: text overlap with arXiv:1408.522

    Weak order for the discretization of the stochastic heat equation

    Get PDF
    In this paper we study the approximation of the distribution of XtX_t Hilbert--valued stochastic process solution of a linear parabolic stochastic partial differential equation written in an abstract form as dXt+AXtdt=Q1/2dWt,X0=x∈H,t∈[0,T], dX_t+AX_t dt = Q^{1/2} d W_t, \quad X_0=x \in H, \quad t\in[0,T], driven by a Gaussian space time noise whose covariance operator QQ is given. We assume that A−αA^{-\alpha} is a finite trace operator for some α>0\alpha>0 and that QQ is bounded from HH into D(Aβ)D(A^\beta) for some β≥0\beta\geq 0. It is not required to be nuclear or to commute with AA. The discretization is achieved thanks to finite element methods in space (parameter h>0h>0) and implicit Euler schemes in time (parameter Δt=T/N\Delta t=T/N). We define a discrete solution XhnX^n_h and for suitable functions ϕ\phi defined on HH, we show that |\E \phi(X^N_h) - \E \phi(X_T) | = O(h^{2\gamma} + \Delta t^\gamma) \noindent where γ<1−α+β\gamma<1- \alpha + \beta. Let us note that as in the finite dimensional case the rate of convergence is twice the one for pathwise approximations

    Branching diffusion representation of semi-linear elliptic PDEs and estimation using Monte Carlo method

    Get PDF
    We study semi-linear elliptic PDEs with polynomial non-linearity and provide a probabilistic representation of their solution using branching diffusion processes. When the non-linearity involves the unknown function but not its derivatives, we extend previous results in the literature by showing that our probabilistic representation provides a solution to the PDE without assuming its existence. In the general case, we derive a new representation of the solution by using marked branching diffusion processes and automatic differentiation formulas to account for the non-linear gradient term. In both cases, we develop new theoretical tools to provide explicit sufficient conditions under which our probabilistic representations hold. As an application, we consider several examples including multi-dimensional semi-linear elliptic PDEs and estimate their solution by using the Monte Carlo method

    A modified semi--implict Euler-Maruyama Scheme for finite element discretization of SPDEs with additive noise

    Full text link
    We consider the numerical approximation of a general second order semi--linear parabolic stochastic partial differential equation (SPDE) driven by additive space-time noise. We introduce a new modified scheme using a linear functional of the noise with a semi--implicit Euler--Maruyama method in time and in space we analyse a finite element method (although extension to finite differences or finite volumes would be possible). We prove convergence in the root mean square L2L^{2} norm for a diffusion reaction equation and diffusion advection reaction equation. We present numerical results for a linear reaction diffusion equation in two dimensions as well as a nonlinear example of two-dimensional stochastic advection diffusion reaction equation. We see from both the analysis and numerics that the proposed scheme has better convergence properties than the standard semi--implicit Euler--Maruyama method
    • …
    corecore