308 research outputs found

    Finite element approximation of nematic liquid crystal flows using a saddle-point structure

    Get PDF
    In this work, we propose finite element schemes for the numerical approximation of nematic liquid crystal flows, based on a saddle-point formulation of the director vector sub-problem. It introduces a Lagrange multiplier that allows to enforce the sphere condition. In this setting, we can consider the limit problem (without penalty) and the penalized problem (using a Ginzburg-Landau penalty function) in a unified way. Further, the resulting schemes have an stable behavior with respect to the value of the penalty parameter, a key difference with respect to the existing schemes. Two different methods have been considered for the time integration. First, we have considered an implicit algorithm that is unconditionally stable and energy preserving. The linearization of the problem at every time step value can be performed using a quasi-Newton method that allows to decouple fluid velocity and director vector computations for every tangent problem. Then, we have designed a linear semi-implicit algorithm (i.e. it does not involve nonlinear iterations) and proved that it is unconditionally stable, verifying a discrete energy inequality. Finally, some numerical simulations are provided

    An Energy-Minimization Finite-Element Approach for the Frank-Oseen Model of Nematic Liquid Crystals: Continuum and Discrete Analysis

    Full text link
    This paper outlines an energy-minimization finite-element approach to the computational modeling of equilibrium configurations for nematic liquid crystals under free elastic effects. The method targets minimization of the system free energy based on the Frank-Oseen free-energy model. Solutions to the intermediate discretized free elastic linearizations are shown to exist generally and are unique under certain assumptions. This requires proving continuity, coercivity, and weak coercivity for the accompanying appropriate bilinear forms within a mixed finite-element framework. Error analysis demonstrates that the method constitutes a convergent scheme. Numerical experiments are performed for problems with a range of physical parameters as well as simple and patterned boundary conditions. The resulting algorithm accurately handles heterogeneous constant coefficients and effectively resolves configurations resulting from complicated boundary conditions relevant in ongoing research.Comment: 31 pages, 3 figures, 3 table

    An Overview on Numerical Analyses of Nematic Liquid Crystal Flows

    Get PDF
    The purpose of this work is to provide an overview of the most recent numerical developments in the field of nematic liquid crystals. The Ericksen-Leslie equations govern the motion of a nematic liquid crystal. This system, in its simplest form, consists of the Navier-Stokes equations coupled with an extra anisotropic stress tensor, which represents the effect of the nematic liquid crystal on the fluid, and a convective harmonic map equation. The sphere constraint must be enforced almost everywhere in order to obtain an energy estimate. Since an almost everywhere satisfaction of this restriction is not appropriate at a numerical level, two alternative approaches have been introduced: a penalty method and a saddle-point method. These approaches are suitable for their numerical approximation by finite elements, since a discrete version of the restriction is enough to prove the desired energy estimate

    An overview on numerical analyses of nematic liquid crystal flows

    Get PDF
    The purpose of this work is to provide an overview of the most recent numerical developments in the field of nematic liquid crystals. The Ericksen-Leslie equations govern the motion of a nematic liquid crystal. This system, in its simplest form, consists of the Navier-Stokes equations coupled with an extra anisotropic stress tensor, which represents the effect of the nematic liquid crystal on the fluid, and a convective harmonic map equation. The sphere constraint must be enforced almost everywhere in order to obtain an energy estimate. Since an almost everywhere satisfaction of this restriction is not appropriate at a numerical level, two alternative approaches have been introduced: a penalty method and a saddle-point method. These approaches are suitable for their numerical approximation by finite elements, since a discrete version of the restriction is enough to prove the desired energy estimate. The Ginzburg-Landau penalty function is usually used to enforce the sphere constraint. Finite element methods of mixed type will play an important role when designing numerical approximations for the penalty method in order to preserve the intrinsic energy estimate. The inf-sup condition that makes the saddle-point method well-posed is not clear yet. The only inf-sup condition for the Lagrange multiplier is obtained in the dual space of H1(Ω). But such an inf-sup condition requires more regularity for the director vector than the one provided by the energy estimate. Herein, we will present an alternative inf-sup condition whose proof for its discrete counterpart with finite elements is still open.Ministerio de Ciencia e Innovació

    Augmented Lagrangian preconditioners for the Oseen-Frank model of nematic and cholesteric liquid crystals

    Full text link
    We propose a robust and efficient augmented Lagrangian-type preconditioner for solving linearizations of the Oseen-Frank model arising in cholesteric liquid crystals. By applying the augmented Lagrangian method, the Schur complement of the director block can be better approximated by the weighted mass matrix of the Lagrange multiplier, at the cost of making the augmented director block harder to solve. In order to solve the augmented director block, we develop a robust multigrid algorithm which includes an additive Schwarz relaxation that captures a pointwise version of the kernel of the semi-definite term. Furthermore, we prove that the augmented Lagrangian term improves the discrete enforcement of the unit-length constraint. Numerical experiments verify the efficiency of the algorithm and its robustness with respect to problem-related parameters (Frank constants and cholesteric pitch) and the mesh size
    corecore