2 research outputs found

    LLC resonant charger with variable inductor control

    Get PDF
    The present work pretends to study the operation and behavior of the LLC resonant converter topology considering a battery charging application, using the traditional switching frequency control and a new control variable, the variable inductance, provided by a current controlled device, the Variable Inductor (VI). During this work, a brief state of the art regarding general types of power converters and resonant power converters is presented. The LLC resonant converter topology and its advantages and disadvantages are described. The VI principle of operation and structure is presented and discussed and, in the end some information about batteries and its behavior under charging and discharging conditions is presented. The considered batteries characteristics for the studied battery charger are shown and the adopted charging profile is presented. In the following chapters, a theoretical analysis of the LLC resonant converter operation and behavior under switching frequency or VI control is performed and presented. A design methodology is proposed for the converter considering both switching frequency and VI control, separately or simultaneously. Simulations of the converter operation under open-loop condition were made, and simulation results were obtained and discussed. A prototype was built and test results were obtained. The prototype uses a SiC MOSFET (Silicon Carbide Metal Oxide-Semiconductor Field Effect Transistor) based inverter working at 100 kHz controlled with fiber optic drivers. To build the prototype, Printed Circuit Boards (PCB) were designed, manufactured and built. An high-frequency transformer and a VI were also design and built. Finally, theoretical, simulation and experimental results are confronted in order to reach conclusions regarding to the proposed design methodology and the prototype operation. This final analysis allows validating the LLC-VI resonant converter as a good option for a battery charger

    Convertisseurs à bobine variable pour applications de transport durables

    Get PDF
    Abstract: Power electronics converters are key components and enable efficient conversion and management of electrical energy in a wide range of applications. For vehicular use, there is an inevitable need to improve their performance and reducing their size. This is particularly important in case of powertrain DC-DC converters as they are required to have improved performance while respecting the specifications, characteristics and stringent space limitations. These objectives define research targets and a particular progress is essential in the field of passive components, semiconductor devices, converter topologies and control. At the current state of technologies, the passive components particularly the power inductors are dominant components which affect the overall volume, cost and performance of power electronic converters. Considering the aforementioned critical aspects, this thesis proposes a variable inductor (VI) concept in order to reduce the weight and size power inductors which are traditionally bulky and have fairly limited operating range. By modulating the permeability of the magnetic material, this concept enhances the current handling capability of power inductors, controls the current ripples, reduces the magnetic and switching losses, as well as the stresses applied to switching devices. Furthermore, it enables the use of smaller cores which leads to the reduction of mass and volume allowing improvements in the converter operation and its overall performance. However, to integrate it into powertrain DC-DC converters, it is fundamental, to question the design of the component itself, the selection of suitable magnetic core materials, and the control of current in the auxiliary winding and saturation management of magnetic cores. This thesis systematically addresses these different research challenges. A particular attention is paid to the experimental study of a VI prototype to demonstrate the concept on a small-scale in order to explore its viability. Subsequently a detailed characterization was developed using finite element analysis to determine the intrinsic functionality of the passive component. Furthermore, this thesis proposed an RMS current based VI design to reduce oversizing of power inductors for electric vehicles application. In this methodology, the selection of a suitable magnetic core material is a crucial step to assure smaller and efficient converters. Hence, this thesis proposes a simplified approach based on weighted property method (WPM) for an appropriate selection of magnetic core in accordance to the needs of the user. Furthermore, to validate the integration of this concept in DC-DC converter topology used in the powertrain of electrified vehicles, an affine parameterization method is used to design the control parameters and a simple management strategy is proposed to enable dynamic control of the VI. The converter control and the proposed strategy are evaluated through simulations of a complete powertrain of a three-wheel recreational vehicle. The small-scale experimental and simulations, and full-scale simulations have demonstrated an interesting capacity of the VI for improving the performance of DC-DC converters for electrified vehicles and manage the saturation of the magnetic core while reducing the size and weight of magnetic components.Les convertisseurs d’électroniques de puissance sont des composants clés de la conversion et gestion efficace de l’énergie électrique dans une large gamme d’applications. Pour des utilisations véhiculaires, il est inévitablement nécessaire d’améliorer leurs performances et de réduire leur taille. Ceci est particulièrement important dans le cas des convertisseurs à courant continu (CC) de la chaine de traction où des performances améliorées en réponse à une large gamme de variations de charge sont recherchées tout en respectant les spécificités, caractéristiques et limitation d’espace nécessaires aux véhicules électrifiés. Ces objectifs définissent une cible de recherche et en particulier des progrès sont essentiels dans le domaine des composants passifs, des dispositifs semi-conducteurs, des topologies des convertisseurs et leurs commandes pour généraliser l’utilisation de véhicules électriques. Les composants passifs, en particulier les inductances de puissance, sont des composants dominants qui affectent le volume global, le coût et les performances de ces convertisseurs d’électroniques de puissance. Compte tenu de ces aspects, cette thèse propose un concept de bobine variable afin de réduire le poids et la taille des inductances de puissance qui sont traditionnellement encombrantes et ont une gamme de fonctionnement assez limitée. En modulant la perméabilité du matériau magnétique, ce concept améliore la capacité de gestion du courant des bobines de puissance, contrôle les ondulations du courant et réduit les pertes magnétiques et par commutation, bien comme les contraintes appliquées aux dispositifs de commutation. En outre, il permet l’utilisation de noyaux plus petits, ce qui entraîne une réduction de masse et de volume, en permettant une amélioration du fonctionnement du convertisseur et de ses performances globales. Cependant, pour l’intégrer aux convertisseurs CC-CC utilisés dans la chaine de traction, il est fondamental de se questionner sur la conception du composant lui-même, la sélection du matériau magnétique, la commande du courant de l’enroulement auxiliaire et la gestion de la saturation du noyau magnétique. Cette thèse aborde de manière systématique ces différents défis de recherche. Une attention particulière est accordée à l’étude expérimentale d’un prototype de bobine variable pour faire la preuve de concept à petite échelle afin d’explorer sa viabilité. Par la suite, une large caractérisation par éléments finis a été développée pour déterminer le fonctionnement intrinsèque de ce composant passif. De plus, cette thèse propose une méthode systématique de design de bobine variable basée sur le courant RMS pour réduire le surdimensionnement traditionnellement associer aux inductances de puissance pour des applications véhiculaires. Dans cette méthodologie, la sélection appropriée du matériau pour le noyau magnétique est une étape cruciale pour garantir des convertisseurs plus petits et efficaces, donc une démarche de sélection simplifiée basée sur la méthode des propriétés pondérées pour le choix de noyau magnétique approprié au besoin de l’application a été mis au point. De plus, pour valider l’intégration de ce concept dans une topologie de convertisseur CC-CC traditionnellement utilisée dans la chaine de traction des véhicules électrifiés, une méthode de synthèse affine a été utilisée pour définir les paramètres des contrôleurs de courant et une stratégie de gestion de la saturation du noyau a été proposée pour permettre le contrôle dynamique de la bobine variable. La commande du convertisseur et la stratégie ont été évaluées par simulation d’une chaine de traction complète d’un véhicule récréatif réel. Les résultats expérimentaux à petite échelle et simulations à pleine échelle ont démontrés des capacités intéressantes de cette bobine variable pour l’amélioration des performances des convertisseurs CC-CC, ayant la capacité de gestion de la saturation du noyau magnétique tout en réduisant la taille et le poids de ces composants passifs, dans le but de son utilisation dans la chaine de traction des véhicules électrifiés
    corecore