152 research outputs found

    Finite complete rewriting systems for regular semigroups

    Get PDF
    It is proved that, given a (von Neumann) regular semigroup with finitely many left and right ideals, if every maximal subgroup is presentable by a finite complete rewriting system, then so is the semigroup. To achieve this, the following two results are proved: the property of being defined by a finite complete rewriting system is preserved when taking an ideal extension by a semigroup defined by a finite complete rewriting system; a completely 0-simple semigroup with finitely many left and right ideals admits a presentation by a finite complete rewriting system provided all of its maximal subgroups do.Comment: 11 page

    On finite complete presentations and exact decompositions of semigroups

    Get PDF
    We prove that given a finite (zero) exact right decomposition (M, T) of a semigroup S, if M is defined by a finite complete presentation, then S is also defined by a finite complete presentation. Exact right decompositions are natural generalizations to semigroups of coset decompositions in groups. As a consequence, we deduce that any Zappa–Szép extension of a monoid defined by a finite complete presentation, by a finite monoid, is also defined by such a presentation. It is also proved that a semigroup M 0[A; I, J; P], where A and P satisfy some very general conditions, is also defined by a finite complete presentation

    On finite complete rewriting systems, finite derivation type, and automaticity for homogeneous monoids

    Get PDF
    This paper investigates the class of finitely presented monoids defined by homogeneous (length-preserving) relations from a computational perspective. The properties of admitting a finite complete rewriting system, having finite derivation type, being automatic, and being biautomatic are investigated for this class of monoids. The first main result shows that for any consistent combination of these properties and their negations, there is a homogeneous monoid with exactly this combination of properties. We then introduce the new concept of abstract Rees-commensurability (an analogue of the notion of abstract commensurability for groups) in order to extend this result to show that the same statement holds even if one restricts attention to the class of n-ary homogeneous monoids (where every side of every relation has fixed length n). We then introduce a new encoding technique that allows us to extend the result partially to the class of n-ary multihomogenous monoids

    Quivers of monoids with basic algebras

    Full text link
    We compute the quiver of any monoid that has a basic algebra over an algebraically closed field of characteristic zero. More generally, we reduce the computation of the quiver over a splitting field of a class of monoids that we term rectangular monoids (in the semigroup theory literature the class is known as DO\mathbf{DO}) to representation theoretic computations for group algebras of maximal subgroups. Hence in good characteristic for the maximal subgroups, this gives an essentially complete computation. Since groups are examples of rectangular monoids, we cannot hope to do better than this. For the subclass of R\mathscr R-trivial monoids, we also provide a semigroup theoretic description of the projective indecomposables and compute the Cartan matrix.Comment: Minor corrections and improvements to exposition were made. Some theorem statements were simplified. Also we made a language change. Several of our results are more naturally expressed using the language of Karoubi envelopes and irreducible morphisms. There are no substantial changes in actual result

    On finite complete rewriting systems, finite derivation type, and automaticity for homogeneous monoids

    Get PDF
    This paper investigates the class of finitely presented monoids defined by homogeneous (length-preserving) relations from a computational perspective. The properties of admitting a finite complete rewriting system, having finite derivation type, being automatic, and being biautomatic are investigated for this class of monoids. The first main result shows that for any consistent combination of these properties and their negations, there is a homogeneous monoid with exactly this combination of properties. We then introduce the new concept of abstract Rees-commensurability (an analogue of the notion of abstract commensurability for groups) in order to extend this result to show that the same statement holds even if one restricts attention to the class of n-ary homogeneous monoids (where every side of every relation has fixed length n). We then introduce a new encoding technique that allows us to extend the result partially to the class of n-ary multihomogenous monoids

    Semigroup presentations for test local groups

    Get PDF
    In this paper we exhibit a type of semigroup presentations which determines a class of local groups. We show that the finite elements of this class generate the pseudovariety LG of all finite local groups and use them as test-semigroups to prove that LG and S, the pseudovariety of all finite semigroups, verify the same kappa-identities involving kappa-terms of rank at most 1, where kappa denotes the implicit signature consisting of the multiplication and the (omega-1)-power.Fundação para a Ciência e a Tecnologia (FCT), under the project PEst-C/MAT/UI0013/2011European Regional Development Fund, through the programme COMPET

    Acta Cybernetica : Volume 13. Number 4.

    Get PDF
    corecore