676 research outputs found

    A Backward-traversal-based Approach for Symbolic Model Checking of Uniform Strategies for Constrained Reachability

    Full text link
    Since the introduction of Alternating-time Temporal Logic (ATL), many logics have been proposed to reason about different strategic capabilities of the agents of a system. In particular, some logics have been designed to reason about the uniform memoryless strategies of such agents. These strategies are the ones the agents can effectively play by only looking at what they observe from the current state. ATL_ir can be seen as the core logic to reason about such uniform strategies. Nevertheless, its model-checking problem is difficult (it requires a polynomial number of calls to an NP oracle), and practical algorithms to solve it appeared only recently. This paper proposes a technique for model checking uniform memoryless strategies. Existing techniques build the strategies from the states of interest, such as the initial states, through a forward traversal of the system. On the other hand, the proposed approach builds the winning strategies from the target states through a backward traversal, making sure that only uniform strategies are explored. Nevertheless, building the strategies from the ground up limits its applicability to constrained reachability objectives only. This paper describes the approach in details and compares it experimentally with existing approaches implemented into a BDD-based framework. These experiments show that the technique is competitive on the cases it can handle.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    Fault-Tolerant Quantum Computation with Local Gates

    Full text link
    I discuss how to perform fault-tolerant quantum computation with concatenated codes using local gates in small numbers of dimensions. I show that a threshold result still exists in three, two, or one dimensions when next-to-nearest-neighbor gates are available, and present explicit constructions. In two or three dimensions, I also show how nearest-neighbor gates can give a threshold result. In all cases, I simply demonstrate that a threshold exists, and do not attempt to optimize the error correction circuit or determine the exact value of the threshold. The additional overhead due to the fault-tolerance in both space and time is polylogarithmic in the error rate per logical gate.Comment: 14 pages, LaTe

    Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies

    Get PDF
    BACKGROUND: An important function of many complex networks is to inhibit or promote the transmission of disease, resources, or information between individuals. However, little is known about how the temporal dynamics of individual-level interactions affect these networks and constrain their function. Ant colonies are a model comparative system for understanding general principles linking individual-level interactions to network-level functions because interactions among individuals enable integration of multiple sources of information to collectively make decisions, and allocate tasks and resources. METHODOLOGY/FINDINGS: Here we show how the temporal and spatial dynamics of such individual interactions provide upper bounds to rates of colony-level information flow in the ant Temnothorax rugatulus. We develop a general framework for analyzing dynamic networks and a mathematical model that predicts how information flow scales with individual mobility and group size. CONCLUSIONS/SIGNIFICANCE: Using thousands of time-stamped interactions between uniquely marked ants in four colonies of a range of sizes, we demonstrate that observed maximum rates of information flow are always slower than predicted, and are constrained by regulation of individual mobility and contact rate. By accounting for the ordering and timing of interactions, we can resolve important difficulties with network sampling frequency and duration, enabling a broader understanding of interaction network functioning across systems and scales

    Symbolic and Deep Learning Based Data Representation Methods for Activity Recognition and Image Understanding at Pixel Level

    Get PDF
    Efficient representation of large amount of data particularly images and video helps in the analysis, processing and overall understanding of the data. In this work, we present two frameworks that encapsulate the information present in such data. At first, we present an automated symbolic framework to recognize particular activities in real time from videos. The framework uses regular expressions for symbolically representing (possibly infinite) sets of motion characteristics obtained from a video. It is a uniform framework that handles trajectory-based and periodic articulated activities and provides polynomial time graph algorithms for fast recognition. The regular expressions representing motion characteristics can either be provided manually or learnt automatically from positive and negative examples of strings (that describe dynamic behavior) using offline automata learning frameworks. Confidence measures are associated with recognitions using Levenshtein distance between a string representing a motion signature and the regular expression describing an activity. We have used our framework to recognize trajectory-based activities like vehicle turns (U-turns, left and right turns, and K-turns), vehicle start and stop, person running and walking, and periodic articulated activities like digging, waving, boxing, and clapping in videos from the VIRAT public dataset, the KTH dataset, and a set of videos obtained from YouTube. Next, we present a core sampling framework that is able to use activation maps from several layers of a Convolutional Neural Network (CNN) as features to another neural network using transfer learning to provide an understanding of an input image. The intermediate map responses of a Convolutional Neural Network (CNN) contain information about an image that can be used to extract contextual knowledge about it. Our framework creates a representation that combines features from the test data and the contextual knowledge gained from the responses of a pretrained network, processes it and feeds it to a separate Deep Belief Network. We use this representation to extract more information from an image at the pixel level, hence gaining understanding of the whole image. We experimentally demonstrate the usefulness of our framework using a pretrained VGG-16 model to perform segmentation on the BAERI dataset of Synthetic Aperture Radar (SAR) imagery and the CAMVID dataset. Using this framework, we also reconstruct images by removing noise from noisy character images. The reconstructed images are encoded using Quadtrees. Quadtrees can be an efficient representation in learning from sparse features. When we are dealing with handwritten character images, they are quite susceptible to noise. Hence, preprocessing stages to make the raw data cleaner can improve the efficacy of their use. We improve upon the efficiency of probabilistic quadtrees by using a pixel level classifier to extract the character pixels and remove noise from the images. The pixel level denoiser uses a pretrained CNN trained on a large image dataset and uses transfer learning to aid the reconstruction of characters. In this work, we primarily deal with classification of noisy characters and create the noisy versions of handwritten Bangla Numeral and Basic Character datasets and use them and the Noisy MNIST dataset to demonstrate the usefulness of our approach

    ACE Models of Endogenous Interactions

    Get PDF
    Various approaches used in Agent-based Computational Economics (ACE) to model endogenously determined interactions between agents are discussed. This concerns models in which agents not only (learn how to) play some (market or other) game, but also (learn to) decide with whom to do that (or not).Endogenous interaction, Agent-based Computational Economics (ACE)

    Applied Formal Methods in Wireless Sensor Networks

    Get PDF
    This work covers the application of formal methods to the world of wireless sensor networks. Mainly two different perspectives are analyzed through mathematical models which can be distinct for example into qualitative statements like "Is the system error free?" From the perspective of quantitative propositions we investigate protocol optimal parameter settings for an energy efficient operation

    Logic matter : digital logic as heuristics for physical self-guided-assembly

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Architecture; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 123-124).Given the increasing complexity of the physical structures surrounding our everyday environment -- buildings, machines, computers and almost every other physical object that humans interact with -- the processes of assembling these complex structures are inevitably caught in a battle of time, complexity and human/machine processing power. If we are to keep up with this exponential growth in construction complexity we need to develop automated assembly logic embedded within our material parts to aid in construction. In this thesis I introduce Logic Matter as a system of passive mechanical digital logic modules for self-guided-assembly of large-scale structures. As opposed to current systems in self-reconfigurable robotics, Logic Matter introduces scalability, robustness, redundancy and local heuristics to achieve passive assembly. I propose a mechanical module that implements digital NAND logic as an effective tool for encoding local and global assembly sequences. I then show a physical prototype that successfully demonstrates the described mechanics, encoded information and passive self-guided-assembly. Finally, I show exciting potentials of Logic Matter as a new system of computing with applications in space/volume filling, surface construction, and 3D circuit assembly.by Skylar J.E. Tibbits.S.M
    • …
    corecore