1,287 research outputs found

    Jamming in finite systems: stability, anisotropy, fluctuations and scaling

    Get PDF
    Athermal packings of soft repulsive spheres exhibit a sharp jamming transition in the thermodynamic limit. Upon further compression, various structural and mechanical properties display clean power-law behavior over many decades in pressure. As with any phase transition, the rounding of such behavior in finite systems close to the transition plays an important role in understanding the nature of the transition itself. The situation for jamming is surprisingly rich: the assumption that jammed packings are isotropic is only strictly true in the large-size limit, and finite-size has a profound effect on the very meaning of jamming. Here, we provide a comprehensive numerical study of finite-size effects in sphere packings above the jamming transition, focusing on stability as well as the scaling of the contact number and the elastic response.Comment: 20 pages, 12 figure

    Glass and Jamming Transitions: From Exact Results to Finite-Dimensional Descriptions

    Full text link
    Despite decades of work, gaining a first-principle understanding of amorphous materials remains an extremely challenging problem. However, recent theoretical breakthroughs have led to the formulation of an exact solution in the mean-field limit of infinite spatial dimension, and numerical simulations have remarkably confirmed the dimensional robustness of some of the predictions. This review describes these latest advances. More specifically, we consider the dynamical and thermodynamic descriptions of hard spheres around the dynamical, Gardner and jamming transitions. Comparing mean-field predictions with the finite-dimensional simulations, we identify robust aspects of the description and uncover its more sensitive features. We conclude with a brief overview of ongoing research.Comment: 5 figures, 26 page

    Finite Element Simulation of Dense Wire Packings

    Full text link
    A finite element program is presented to simulate the process of packing and coiling elastic wires in two- and three-dimensional confining cavities. The wire is represented by third order beam elements and embedded into a corotational formulation to capture the geometric nonlinearity resulting from large rotations and deformations. The hyperbolic equations of motion are integrated in time using two different integration methods from the Newmark family: an implicit iterative Newton-Raphson line search solver, and an explicit predictor-corrector scheme, both with adaptive time stepping. These two approaches reveal fundamentally different suitability for the problem of strongly self-interacting bodies found in densely packed cavities. Generalizing the spherical confinement symmetry investigated in recent studies, the packing of a wire in hard ellipsoidal cavities is simulated in the frictionless elastic limit. Evidence is given that packings in oblate spheroids and scalene ellipsoids are energetically preferred to spheres.Comment: 17 pages, 7 figures, 1 tabl

    Beyond icosahedral symmetry in packings of proteins in spherical shells

    Get PDF
    The formation of quasi-spherical cages from protein building blocks is a remarkable self-assembly process in many natural systems, where a small number of elementary building blocks are assembled to build a highly symmetric icosahedral cage. In turn, this has inspired synthetic biologists to design de novo protein cages. We use simple models, on multiple scales, to investigate the self-assembly of a spherical cage, focusing on the regularity of the packing of protein-like objects on the surface. Using building blocks, which are able to pack with icosahedral symmetry, we examine how stable these highly symmetric structures are to perturbations that may arise from the interplay between flexibility of the interacting blocks and entropic effects. We find that, in the presence of those perturbations, icosahedral packing is not the most stable arrangement for a wide range of parameters; rather disordered structures are found to be the most stable. Our results suggest that (i) many designed, or even natural, protein cages may not be regular in the presence of those perturbations, and (ii) that optimizing those flexibilities can be a possible design strategy to obtain regular synthetic cages with full control over their surface properties.Comment: 8 pages, 5 figure
    • …
    corecore