262,864 research outputs found

    Physical accessible transformations on a finite number of quantum states

    Get PDF
    We consider to treat the usual probabilistic cloning, state separation, unambiguous state discrimination, \emph{etc} in a uniform framework. All these transformations can be regarded as special examples of generalized completely positive trace non-increasing maps on a finite number of input states. From the system-ancilla model we construct the corresponding unitary implementation of pure →\to pure, pure →\to mixed, mixed →\to pure, and mixed →\to mixed states transformations in the whole system and obtain the necessary and sufficient conditions on the existence of the desired maps. We expect our work will be helpful to explore what we can do on a finite set of input states.Comment: 7 page

    Bäcklund transformations, energy shift and the plane wave limit

    Get PDF
    We discuss basic properties of the Bäcklund transformations for the classical string in AdS space in the context of the null-surface perturbation theory. We explain the relation between the Bäcklund transformations and the energy shift of the dual field theory state. We show that the Bäcklund transformations can be represented as a finite-time evolution generated by a special linear combination of the Pohlmeyer charges. This is a manifestation of the general property of Bäcklund transformations known as spectrality. We also discuss the plane wave limit

    Large Aperiodic Semigroups

    Get PDF
    The syntactic complexity of a regular language is the size of its syntactic semigroup. This semigroup is isomorphic to the transition semigroup of the minimal deterministic finite automaton accepting the language, that is, to the semigroup generated by transformations induced by non-empty words on the set of states of the automaton. In this paper we search for the largest syntactic semigroup of a star-free language having nn left quotients; equivalently, we look for the largest transition semigroup of an aperiodic finite automaton with nn states. We introduce two new aperiodic transition semigroups. The first is generated by transformations that change only one state; we call such transformations and resulting semigroups unitary. In particular, we study complete unitary semigroups which have a special structure, and we show that each maximal unitary semigroup is complete. For n≥4n \ge 4 there exists a complete unitary semigroup that is larger than any aperiodic semigroup known to date. We then present even larger aperiodic semigroups, generated by transformations that map a non-empty subset of states to a single state; we call such transformations and semigroups semiconstant. In particular, we examine semiconstant tree semigroups which have a structure based on full binary trees. The semiconstant tree semigroups are at present the best candidates for largest aperiodic semigroups. We also prove that 2n−12^n-1 is an upper bound on the state complexity of reversal of star-free languages, and resolve an open problem about a special case of state complexity of concatenation of star-free languages.Comment: 22 pages, 1 figure, 2 table

    Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity

    Get PDF
    In this work we present some new understanding of topological order, including three main aspects: (1) It was believed that classifying topological orders corresponds to classifying gapped quantum states. We show that such a statement is not precise. We introduce the concept of \emph{gapped quantum liquid} as a special kind of gapped quantum states that can "dissolve" any product states on additional sites. Topologically ordered states actually correspond to gapped quantum liquids with stable ground-state degeneracy. Symmetry-breaking states for on-site symmetry are also gapped quantum liquids, but with unstable ground-state degeneracy. (2) We point out that the universality classes of generalized local unitary (gLU) transformations (without any symmetry) contain both topologically ordered states and symmetry-breaking states. This allows us to use a gLU invariant -- topological entanglement entropy -- to probe the symmetry-breaking properties hidden in the exact ground state of a finite system, which does not break any symmetry. This method can probe symmetry- breaking orders even without knowing the symmetry and the associated order parameters. (3) The universality classes of topological orders and symmetry-breaking orders can be distinguished by \emph{stochastic local (SL) transformations} (i.e.\ \emph{local invertible transformations}): small SL transformations can convert the symmetry-breaking classes to the trivial class of product states with finite probability of success, while the topological-order classes are stable against any small SL transformations, demonstrating a phenomenon of emergence of unitarity. This allows us to give a new definition of long-range entanglement based on SL transformations, under which only topologically ordered states are long-range entangled.Comment: Revised version. Figures and references adde

    On OBDD Transformations Representing Finite State Automata

    Get PDF
    We present OBDD transformation problem representing finite labeled transition systems corresponding to some congruence relation. Transformations are oriented toward obtaining the OBDD of a minimized transition system for this congruence relation
    • …
    corecore