1,864 research outputs found

    Degree of Sequentiality of Weighted Automata

    Get PDF
    Weighted automata (WA) are an important formalism to describe quantitative properties. Obtaining equivalent deterministic machines is a longstanding research problem. In this paper we consider WA with a set semantics, meaning that the semantics is given by the set of weights of accepting runs. We focus on multi-sequential WA that are defined as finite unions of sequential WA. The problem we address is to minimize the size of this union. We call this minimum the degree of sequentiality of (the relation realized by) the WA. For a given positive integer k, we provide multiple characterizations of relations realized by a union of k sequential WA over an infinitary finitely generated group: a Lipschitz-like machine independent property, a pattern on the automaton (a new twinning property) and a subclass of cost register automata. When possible, we effectively translate a WA into an equivalent union of k sequential WA. We also provide a decision procedure for our twinning property for commutative computable groups thus allowing to compute the degree of sequentiality. Last, we show that these results also hold for word transducers and that the associated decision problem is PSPACE -complete

    Streaming Tree Transducers

    Get PDF
    Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis problems for specification languages for transforming hierarchically structured data such as XML documents. We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming unranked ordered trees in a single pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of the model coincides with transductions definable using monadic second-order logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and checking functional equivalence are solvable for our model.Comment: 40 page

    Synthesis of Data Word Transducers

    Full text link
    In reactive synthesis, the goal is to automatically generate an implementation from a specification of the reactive and non-terminating input/output behaviours of a system. Specifications are usually modelled as logical formulae or automata over infinite sequences of signals (ω\omega-words), while implementations are represented as transducers. In the classical setting, the set of signals is assumed to be finite. In this paper, we consider data ω\omega-words instead, i.e., words over an infinite alphabet. In this context, we study specifications and implementations respectively given as automata and transducers extended with a finite set of registers. We consider different instances, depending on whether the specification is nondeterministic, universal or deterministic, and depending on whether the number of registers of the implementation is given or not. In the unbounded setting, we show undecidability for both universal and nondeterministic specifications, while decidability is recovered in the deterministic case. In the bounded setting, undecidability still holds for nondeterministic specifications, but can be recovered by disallowing tests over input data. The generic technique we use to show the latter result allows us to reprove some known result, namely decidability of bounded synthesis for universal specifications
    • …
    corecore