11,611 research outputs found

    Feedback Capacity of the Compound Channel

    Full text link
    In this work we find the capacity of a compound finite-state channel with time-invariant deterministic feedback. The model we consider involves the use of fixed length block codes. Our achievability result includes a proof of the existence of a universal decoder for the family of finite-state channels with feedback. As a consequence of our capacity result, we show that feedback does not increase the capacity of the compound Gilbert-Elliot channel. Additionally, we show that for a stationary and uniformly ergodic Markovian channel, if the compound channel capacity is zero without feedback then it is zero with feedback. Finally, we use our result on the finite-state channel to show that the feedback capacity of the memoryless compound channel is given by infθmaxQXI(X;Yθ)\inf_{\theta} \max_{Q_X} I(X;Y|\theta).Comment: 34 pages, 2 figures, submitted to IEEE Transactions on Information Theor

    Capacity Region of Finite State Multiple-Access Channel with Delayed State Information at the Transmitters

    Full text link
    A single-letter characterization is provided for the capacity region of finite-state multiple access channels. The channel state is a Markov process, the transmitters have access to delayed state information, and channel state information is available at the receiver. The delays of the channel state information are assumed to be asymmetric at the transmitters. We apply the result to obtain the capacity region for a finite-state Gaussian MAC, and for a finite-state multiple-access fading channel. We derive power control strategies that maximize the capacity region for these channels

    Stochastic Stability Analysis of Discrete Time System Using Lyapunov Measure

    Full text link
    In this paper, we study the stability problem of a stochastic, nonlinear, discrete-time system. We introduce a linear transfer operator-based Lyapunov measure as a new tool for stability verification of stochastic systems. Weaker set-theoretic notion of almost everywhere stochastic stability is introduced and verified, using Lyapunov measure-based stochastic stability theorems. Furthermore, connection between Lyapunov functions, a popular tool for stochastic stability verification, and Lyapunov measures is established. Using the duality property between the linear transfer Perron-Frobenius and Koopman operators, we show the Lyapunov measure and Lyapunov function used for the verification of stochastic stability are dual to each other. Set-oriented numerical methods are proposed for the finite dimensional approximation of the Perron-Frobenius operator; hence, Lyapunov measure is proposed. Stability results in finite dimensional approximation space are also presented. Finite dimensional approximation is shown to introduce further weaker notion of stability referred to as coarse stochastic stability. The results in this paper extend our earlier work on the use of Lyapunov measures for almost everywhere stability verification of deterministic dynamical systems ("Lyapunov Measure for Almost Everywhere Stability", {\it IEEE Trans. on Automatic Control}, Vol. 53, No. 1, Feb. 2008).Comment: Proceedings of American Control Conference, Chicago IL, 201
    corecore