258 research outputs found

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    A Finite Queue Model Analysis of PMRC-based Wireless Sensor networks

    Full text link
    In our previous work, a highly scalable and fault- tolerant network architecture, the Progressive Multi-hop Rotational Clustered (PMRC) structure, is proposed for constructing large-scale wireless sensor networks. Further, the overlapped scheme is proposed to solve the bottleneck problem in PMRC-based sensor networks. As buffer space is often scarce in sensor nodes, in this paper, we focus on studying the queuing performance of cluster heads in PMRC-based sensor networks. We develop a finite queuing model to analyze the queuing performance of cluster heads for both non-overlapped and overlapped PMRC-based sensor network. The average queue length and average queue delay of cluster head in different layers are derived. To validate the analysis results, simulations have been conducted with different loads for both non- overlapped and overlapped PMRC-based sensor networks. Simulation results match with the analysis results in general and confirm the advantage of selecting two cluster heads over selecting single cluster head in terms of the improved queuing performance

    A Game Theory based Contention Window Adjustment for IEEE 802.11 under Heavy Load

    Get PDF
    The 802.11 families are considered as the most applicable set of standards for Wireless Local Area Networks (WLANs) where nodes make access to the wireless media using random access techniques. In such networks, each node adjusts its contention window to the minimum size irrespective of the number of competing nodes, so in saturated mode and excessive number of nodes available, the network performance is reduced due to severe collision probability. A cooperative game is being proposed to adjust the users’ contention windows in improving the network throughput, delay and packet drop ratio under heavy traffic load circumstances. The system’s performance evaluated by simulations indicate some superiorities of the proposed method over 802.11-DCF (Distribute Coordinate Function)

    Diseños de capa cruzada para redes inalámbricas de área corporal energéticamente eficientes: una revisión

    Get PDF
    RESUMEN: El diseño de capa cruzada se considera una poderosa alternativa para dar solución a las complejidades introducidas por las comunicaciones inalámbricas en redes de área corporal (WBAN), donde el modelo clásico de comunicaciones no ha exhibido un desempeño adecuado. Respecto al problema puntual de consumo de energía, hemos preparado la presente revisión de las publicaciones más relevantes que tratan la eficiencia energética para WBAN usando diseño de capa cruzada. En este artículo se proporciona una revisión exhaustiva de los avances en aproximaciones, protocolos y optimizaciones de capa cruzada cuyo objetivo es incrementar el tiempo de vida de las redes WBAN mediante el ahorro de energía. Luego, se discute los aspectos relevantes y deficiencias de las técnicas de capa cruzada energéticamente eficientes. Además, se introducen aspectos de investigación abiertos y retos en el diseño de capa cruzada para WBAN. En esta revisión proponemos una taxonomía de las aproximaciones de capa cruzada, de modo que las técnicas revisadas se ajustan en categorías de acuerdo a los protocolos involucrados en el diseño. Una clasificación novedosa se incluye para hacer claridad en los conceptos teóricos involucrados en cada esquema de capa cruzada y para luego agrupar aproximaciones similares evidenciando las diferencias con otras técnicas entre sí. Nuestras conclusiones consideran los aspectos de movilidad y modelamiento del canal en escenarios de WBAN como las direcciones para futura investigación en WBAN y en aplicaciones de telemedicina.ABSTRACT: Cross-layer design is considered a powerful alternative to solve the complexities of wireless communication in wireless body area networks (WBAN), where the classical communication model has been shown to be inaccurate. Regarding the energy consumption problem, we have prepared a current survey of the most relevant scientific publications on energy-efficient cross-layer design for WBAN. In this paper, we provide a comprehensive review of the advances in cross-layer approaches, protocols and optimizations aimed at increasing the network lifetime by saving energy in WBANs. Subsequently, we discuss the relevant aspects and shortcomings of these energy-efficient cross-layer techniques and point out the open research issues and challenges in WBAN cross-layer design. In this survey, we propose a taxonomy for cross-layer approaches to fit them into categories based on the protocols involved in the cross-layer scheme. A novel classification is included to clarify the theoretical concepts behind each cross-layer scheme; and to group similar approaches by establishing their differences from the other strategies reviewed. Our conclusion considers the aspects of mobility and channel modeling in WBAN scenarios as the directions of future cross-layer research for WBAN and telemedicine applications

    Delay Contributing Factors and Strategies Towards Its Minimization in IoT

    Get PDF
    Internet of Things (IoT) refers to various interconnected devices, typically supplied with limited computational and communication resources. Most of the devices are designed to operate with limited memory and processing capability, low bandwidth, short range and other characteristics of low cost hardware. The resulting networks are exposed to traffic loss and prone to other vulnerabilities. One of the major concerns is to ensure that the network communication among these deployed devices remains at required level of Quality of Service (QoS) of different IoT applications. The purpose of this paper is to highlight delay contributing factors in Low Power and Lossy Networks (LLNs) since providing low end-to-end delay is a crucial issue in IoT environment especially for mission critical applications. Various research efforts in relevance to this aspect are then presente

    Layering as Optimization Decomposition: Questions and Answers

    Get PDF
    Network protocols in layered architectures have historically been obtained on an ad-hoc basis, and much of the recent cross-layer designs are conducted through piecemeal approaches. Network protocols may instead be holistically analyzed and systematically designed as distributed solutions to some global optimization problems in the form of generalized Network Utility Maximization (NUM), providing insight on what they optimize and on the structures of network protocol stacks. In the form of 10 Questions and Answers, this paper presents a short survey of the recent efforts towards a systematic understanding of "layering" as "optimization decomposition". The overall communication network is modeled by a generalized NUM problem, each layer corresponds to a decomposed subproblem, and the interfaces among layers are quantified as functions of the optimization variables coordinating the subproblems. Furthermore, there are many alternative decompositions, each leading to a different layering architecture. Industry adoption of this unifying framework has also started. Here we summarize the current status of horizontal decomposition into distributed computation and vertical decomposition into functional modules such as congestion control, routing, scheduling, random access, power control, and coding. We also discuss under-explored future research directions in this area. More importantly than proposing any particular crosslayer design, this framework is working towards a mathematical foundation of network architectures and the design process of modularization

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research
    corecore