113 research outputs found

    Interpolation and sampling sequences for entire functions

    Get PDF
    We characterise interpolating and sampling sequences for the spaces of entire functions ff such that f e^{-\phi}\in L^p(\C), p1p\geq 1 where ϕ\phi is a subharmonic weight whose Laplacian is a doubling measure. The results are expressed in terms of some densities adapted to the metric induced by Δϕ\Delta\phi. They generalise previous results by Seip for the case ϕ(z)=z2\phi(z)=|z|^2, Berndtsson and Ortega-Cerdà and Ortega-Cerdà and Seip for the case when Δϕ\Delta\phi is bounded above and below, and Lyubarski\u{\i} \& Seip for 1-homogeneous weights of the form ϕ(z)=zh(argz)\phi(z)=|z|h(\arg z), where hh is a trigonometrically strictly convex function

    Functional Calculus

    Get PDF
    The aim of this book is to present a broad overview of the theory and applications related to functional calculus. The book is based on two main subject areas: matrix calculus and applications of Hilbert spaces. Determinantal representations of the core inverse and its generalizations, new series formulas for matrix exponential series, results on fixed point theory, and chaotic graph operations and their fundamental group are contained under the umbrella of matrix calculus. In addition, numerical analysis of boundary value problems of fractional differential equations are also considered here. In addition, reproducing kernel Hilbert spaces, spectral theory as an application of Hilbert spaces, and an analysis of PM10 fluctuations and optimal control are all contained in the applications of Hilbert spaces. The concept of this book covers topics that will be of interest not only for students but also for researchers and professors in this field of mathematics. The authors of each chapter convey a strong emphasis on theoretical foundations in this book

    Breaking the Coherence Barrier: A New Theory for Compressed Sensing

    Get PDF
    This paper presents a framework for compressed sensing that bridges a gap between existing theory and the current use of compressed sensing in many real-world applications. In doing so, it also introduces a new sampling method that yields substantially improved recovery over existing techniques. In many applications of compressed sensing, including medical imaging, the standard principles of incoherence and sparsity are lacking. Whilst compressed sensing is often used successfully in such applications, it is done largely without mathematical explanation. The framework introduced in this paper provides such a justification. It does so by replacing these standard principles with three more general concepts: asymptotic sparsity, asymptotic incoherence and multilevel random subsampling. Moreover, not only does this work provide such a theoretical justification, it explains several key phenomena witnessed in practice. In particular, and unlike the standard theory, this work demonstrates the dependence of optimal sampling strategies on both the incoherence structure of the sampling operator and on the structure of the signal to be recovered. Another key consequence of this framework is the introduction of a new structured sampling method that exploits these phenomena to achieve significant improvements over current state-of-the-art techniques

    Piecewise Linear Control Systems

    Get PDF
    This thesis treats analysis and design of piecewise linear control systems. Piecewise linear systems capture many of the most common nonlinearities in engineering systems, and they can also be used for approximation of other nonlinear systems. Several aspects of linear systems with quadratic constraints are generalized to piecewise linear systems with piecewise quadratic constraints. It is shown how uncertainty models for linear systems can be extended to piecewise linear systems, and how these extensions give insight into the classical trade-offs between fidelity and complexity of a model. Stability of piecewise linear systems is investigated using piecewise quadratic Lyapunov functions. Piecewise quadratic Lyapunov functions are much more powerful than the commonly used quadratic Lyapunov functions. It is shown how piecewise quadratic Lyapunov functions can be computed via convex optimization in terms of linear matrix inequalities. The computations are based on a compact parameterization of continuous piecewise quadratic functions and conditional analysis using the S-procedure. A unifying framework for computation of a variety of Lyapunov functions via convex optimization is established based on this parameterization. Systems with attractive sliding modes and systems with bounded regions of attraction are also treated. Dissipativity analysis and optimal control problems with piecewise quadratic cost functions are solved via convex optimization. The basic results are extended to fuzzy systems, hybrid systems and smooth nonlinear systems. It is shown how Lyapunov functions with a discontinuous dependence on the discrete state can be computed via convex optimization. An automated procedure for increasing the flexibility of the Lyapunov function candidate is suggested based on linear programming duality. A Matlab toolbox that implements several of the results derived in the thesis is presented

    Modeling of ultrasonic scattering experiments with applications to system and transducer characterization

    Get PDF
    The voltage signal output by the receiver electronics, which represents the observable quantity in an ultrasonic scattering experiment, is written as a product, in the frequency domain, of two factors: the system efficiency and the scattering coefficient. The system efficiency represents the combined electrical properties of both the generator and receiver electronics and is a function of frequency only. The scattering coefficient represents the acoustic nature of the experiment (the radiation, propagation, scattering and reception of ultrasonic waves) and depends on the distributed field properties of the transducers involved and their locations and orientations, on the number and type of scattering obstacles and their locations and orientations, on the acoustic properties of the media through which the waves travel, and on the nature and shape of any interfaces through which the waves pass. Based on a generalized principle of electroacoustic reciprocity, formulae are developed for the evaluation of the scattering coefficient. The most general of these involve an integration over either the volume or the surface of the scattering obstacle. More specific formulae are also developed which express the scattering coefficient in terms of either the spherical wave transition matrix or the plane wave scattering amplitude of the obstacle;In order to demonstrate the use of the formulae developed, the calculation of the scattering coefficient is considered for two common ultrasonic scattering experiments. The first experiment involves the pulse-echo scattering from an infinite, flat elastic plate immersed in water. This arrangement is often used for the measurement of the velocity and attenuation of elastic waves, and also as a reference experiment for the determination of the system efficiency. The second experiment involves the pulse-echo scattering from an elastic sphere immersed in water. Particular attention is given to the specular reflection component of the scattering, which is demonstrated to be approximately equivalent to a point measurement of the pressure field radiated by the transducer. This approximation is subsequently used as the basis for obtaining experimental data for transducer characterization. The characterization itself is based on expanding in a set of basis functions, each weighted by an unknown coefficient, the normal velocity profile across the plane flush with the face of the probe. Values for the coefficients are obtained by determining the best fit between the experimental pressure data and the pressure calculated from the assumed velocity profile. Results are presented for two commercially manufactured immersion transducers, one planar (unfocused) and the other focused
    corecore