88 research outputs found

    Optimisation of computational fluid dynamics applications on multicore and manycore architectures

    Get PDF
    This thesis presents a number of optimisations used for mapping the underlying computational patterns of finite volume CFD applications onto the architectural features of modern multicore and manycore processors. Their effectiveness and impact is demonstrated in a block-structured and an unstructured code of representative size to industrial applications and across a variety of processor architectures that make up contemporary high-performance computing systems. The importance of vectorization and the ways through which this can be achieved is demonstrated in both structured and unstructured solvers together with the impact that the underlying data layout can have on performance. The utility of auto-tuning for ensuring performance portability across multiple architectures is demonstrated and used for selecting optimal parameters such as prefetch distances for software prefetching or tile sizes for strip mining/loop tiling. On the manycore architectures, running more than one thread per physical core is found to be crucial for good performance on processors with in-order core designs but not required on out-of-order architectures. For architectures with high-bandwidth memory packages, their exploitation, whether explicitly or implicitly, is shown to be imperative for best performance. The implementation of all of these optimisations led to application speed-ups ranging between 2.7X and 3X on the multicore CPUs and 5.7X to 24X on the manycore processors.Open Acces

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    Hierarchical Parallelisation of Functional Renormalisation Group Calculations -- hp-fRG

    Get PDF
    The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes

    Towards Efficient and Scalable Discontinuous Galerkin Methods for Unsteady Flows

    Get PDF
    openNegli ultimi anni, la crescente disponibilit`a di risorse computazionali ha contribuito alla diffusione della fluidodinamica computazionale per la ricerca e per la progettazione industriale. Uno degli approcci pi promettenti si basa sul metodo agli elementi finiti discontinui di Galerkin (dG). Nell’ambito di queste metodologie, il contributo della tesi e' triplice. Innanzi- tutto, il lavoro introduce un algoritmo di parallelizzazione ibrida MPI/OpenMP per l’utilizzo efficiente di risorse di super calcolo. In secondo luogo, propone strategie di soluzione efficienti, scalabili e con limitata allocazione di memoria per la soluzione di problemi complessi. Infine, confronta le strategie di soluzione introdotte con nuove tecniche di discretizzazione dette “ibridizzabili”, su problemi riguardanti la soluzione delle equazioni di Navier–Stokes non stazionarie. L’efficienza computazionale e' stata valutata su casi di crescente complessita' riguardanti la simulazione della turbolenza. In primo luogo, e' stata considerata la convezione naturale di Rayleigh-Benard e il flusso turbolento in un canale a numeri di Reynolds moderatamente alti. Le strategie di soluzione proposte sono risultate fino a cinque volte piu` veloci rispetto ai metodi standard allocando solamente il 7% della memoria. In secondo luogo, e' stato analizzato il flusso attorno ad una piastra piana con bordo arrotondato sottoposta a diversi livelli di turbolenza in ingresso. Nonostante la maggiore complessità' dovuta all’uso di elementi curvi ed anisotropi, l’algoritmo proposto e' risultato oltre tre volte piu` veloce allocando il 15% della memoria rispetto ad un metodo standard. Concludendo, viene riportata la simulazione del “Boeing Rudimentary Landing Gear” a Re = 10^6. In tutti i casi i risultati ottenuti sono in ottimo accordo con i dati sperimentali e con precedenti simulazioni numeriche pubblicate in letteratura.In recent years the increasing availability of High Performance Computing (HPC) resources strongly promoted the widespread of high fidelity simulations, such as the Large Eddy Simulation (LES), for industrial research and design. One of the most promising approaches to those kind of simulations is based on the discontinuous Galerkin (dG) discretization method. The contribution of the thesis towards this research area is three-fold. First, the work introduces an efficient hybrid MPI/OpenMP parallelisation paradigm to fruitfully exploit large HPC facilities. Second, it reports efficient, scalable and memory saving solution strategies for stiff dG discretisations. Third, it compares those solution strategies, for the first time using the same numerical framework, to hybridizable discontinuous Galerkin (HDG) methods, including a novel implementation of a p-multigrid preconditioning approach, on unsteady flow problems involving the solution of the NavierStokes equations. The improvements in computational efficiency have been evaluated on cases of growing complexity involving large eddy simulations of turbulent flows. First, the Rayleigh-Benard convection problem and the turbulent channel flow at moderately high Reynolds numbers is presented. The solution strategies proposed resulted up to five times faster than standard matrix-based methods while al- locating the 7% of the memory. A second family of test cases involve the LES simulation of a rounded leading edge flat plate under different levels of free-stream turbulence. Although the increased stiffness of the iteration matrix due to the use of curved and stretched elements, the solver resulted more than three times faster while allocating the 15% of the memory if compared to standard methods. Finally, the large eddy simulation of the Boeing Rudimentary Landing Gear at Re = 10^6 is reported. In all the cases, a remarkable agreement with experimental data as well as previous numerical simulations is documented.INGEGNERIA INDUSTRIALEopenFranciolini, Matte

    Applying future Exascale HPC methodologies in the energy sector

    Get PDF
    The appliance of new exascale HPC techniques to energy industry simulations is absolutely needed nowadays. In this sense, the common procedure is to customize these techniques to the specific energy sector they are of interest in order to go beyond the state-of-the-art in the required HPC exascale simulations. With this aim, the HPC4E project is developing new exascale methodologies to three different energy sources that are the present and the future of energy: wind energy production and design, efficient combustion systems for biomass-derived fuels (biogas), and exploration geophysics for hydrocarbon reservoirs. In this work, the general exascale advances proposed as part of HPC4E and its outcome to specific results in different domains are presented.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imaging.Postprint (author's final draft
    • 

    corecore