16,747 research outputs found

    Multiscale simulations of porous media flows in flow-based coordinate system

    Get PDF
    In this paper, we propose a multiscale technique for the simulation of porous media flows in a flow-based coordinate system. A flow-based coordinate system allows us to simplify the scale interaction and derive the upscaled equations for purely hyperbolic transport equations. We discuss the applications of the method to two-phase flows in heterogeneous porous media. For two-phase flow simulations, the use of a flow-based coordinate system requires limited global information, such as the solution of single-phase flow. Numerical results show that one can achieve accurate upscaling results using a flow-based coordinate system

    Effective transient behaviour of heterogeneous media in diffusion problems with a large contrast in the phase diffusivities

    Get PDF
    This paper presents a homogenisation-based constitutive model to describe the effective tran- sient diffusion behaviour in heterogeneous media in which there is a large contrast between the phase diffusivities. In this case mobile species can diffuse over long distances through the fast phase in the time scale of diffusion in the slow phase. At macroscopic scale, contrasted phase diffusivities lead to a memory effect that cannot be properly described by classical Fick's second law. Here we obtain effective governing equations through a two-scale approach for composite materials consisting of a fast matrix and slow inclusions. The micro-macro transition is similar to first-order computational homogenisation, and involves the solution of a transient diffusion boundary-value problem in a Representative Volume Element of the microstructure. Different from computational homogenisation, we propose a semi-analytical mean-field estimate of the composite response based on the exact solution for a single inclusion developed in our previous work [Brassart, L., Stainier, L., 2018. Effective transient behaviour of inclusions in diffusion problems. Z. Angew Math. Mech. 98, 981-998]. A key outcome of the model is that the macroscopic concentration is not one-to-one related to the macroscopic chemical potential, but obeys a local kinetic equation associated with diffusion in the slow phase. The history-dependent macroscopic response admits a representation based on internal variables, enabling efficient time integration. We show that the local chemical kinetics can result in non-Fickian behaviour in macroscale boundary-value problems.Comment: 36 pages, 14 figure
    corecore