4,213 research outputs found

    Finite Distributive Concept Algebras

    Get PDF
    Concept algebras are concept lattices enriched by a weak negation and a weak opposition. In Ganter and Kwuida (Contrib. Gen. Algebra, 14:63-72, 2004) we gave a contextual description of the lattice of weak negations on a finite lattice. In this contribution1 we use this description to give a characterization of finite distributive concept algebra

    Locally Complete Path Independent Choice Functions and Their Lattices

    Get PDF
    The concept of path independence (PI) was first introduced by Arrow (1963) as a defense of his requirement that collective choices be rationalized by a weak ordering. Plott (1973) highlighted the dynamic aspects of PI implicit in Arrow's initial discussion. Throughout these investigations two questions, both initially raised by Plott, remained unanswered. What are the precise mathematical foundations for path independence? How can PI choice functions be constructed? We give complete answers to both these questions for finite domains and provide necessary conditions for infinite domains. We introduce a lattice associated with each PI function. For finite domains these lattices coincide with locally lower distributive or meet-distributive lattices and uniquely characterize PI functions. We also present an algorithm, effective and exhaustive for finite domains, for the construction of PI choice functions and hence for all finite locally lower distributive lattices. For finite domains, a PI function is rationalizable if and only if the lattice is distributive. The lattices associated with PI functions that satisfy the stronger condition of the weak axiom of revealed preference are chains of Boolean algebras and conversely. Those that satisfy the strong axiom of revealed preference are chains and conversely.

    On the isomorphism problem of concept algebras

    Get PDF
    Weakly dicomplemented lattices are bounded lattices equipped with two unary operations to encode a negation on {\it concepts}. They have been introduced to capture the equational theory of concept algebras \cite{Wi00}. They generalize Boolean algebras. Concept algebras are concept lattices, thus complete lattices, with a weak negation and a weak opposition. A special case of the representation problem for weakly dicomplemented lattices, posed in \cite{Kw04}, is whether complete {\wdl}s are isomorphic to concept algebras. In this contribution we give a negative answer to this question (Theorem \ref{T:main}). We also provide a new proof of a well known result due to M.H. Stone \cite{St36}, saying that {\em each Boolean algebra is a field of sets} (Corollary \ref{C:Stone}). Before these, we prove that the boundedness condition on the initial definition of {\wdl}s (Definition \ref{D:wdl}) is superfluous (Theorem \ref{T:wcl}, see also \cite{Kw09}).Comment: 15 page

    Localization of semi-Heyting algebras

    Get PDF
    In this note, we introduce the notion of ideal on semi-Heyting algebras which allows us to consider a topology on them. Besides, we define the concept of F−multiplier, where F is a topology on a semi-Heyting algebra L, which is used to construct the localization semi-Heyting algebra LF. Furthermore, we prove that the semi-Heyting algebra of fractions LS associated with an ∧−closed system S of L is a semi-Heyting of localization. Finally, in the finite case we prove that LS is isomorphic to a special subalgebra of L. Since Heyting algebras are a particular case of semi-Heyting algebras, all these results generalize those obtained in [11].Fil: Figallo, Aldo Victorio. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; ArgentinaFil: Pelaitay, Gustavo Andrés. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Departamento de Matemática; Argentin

    Infinite combinatorial issues raised by lifting problems in universal algebra

    Full text link
    The critical point between varieties A and B of algebras is defined as the least cardinality of the semilattice of compact congruences of a member of A but of no member of B, if it exists. The study of critical points gives rise to a whole array of problems, often involving lifting problems of either diagrams or objects, with respect to functors. These, in turn, involve problems that belong to infinite combinatorics. We survey some of the combinatorial problems and results thus encountered. The corresponding problematic is articulated around the notion of a k-ladder (for proving that a critical point is large), large free set theorems and the classical notation (k,r,l){\to}m (for proving that a critical point is small). In the middle, we find l-lifters of posets and the relation (k, < l){\to}P, for infinite cardinals k and l and a poset P.Comment: 22 pages. Order, to appea
    corecore