135,498 research outputs found

    Hysteretic beam element with degrading bouc-wen models

    Get PDF
    In this work a beam element based on the finite element method, suitable for the inelastic dynamic analysis of structures is presented. The hysteretic beam element proposed by Triantafyllou and Koumousis [1] is extended to account for stiffness degradation, strength deterioration and pinching phenomena. The behavior of the element is governed by the BoucWen model of hysteresis while stiffness and strength degradation are based on Baber and Wen model [2] and pinching on Foliente’s model [3]. The case of non-symmetrical yielding, important for concrete members, is also taken into account. The proposed formulation is based on additional hysteretic degrees of freedom which herein are considered as hysteretic curvatures and hysteretic axial deformations of the crosssections. The elements are assembled using the direct stiffness method to determine the mass and viscous damping matrices, as well as the elastic stiffness and the hysteretic matrix of the structure. The entire set of governing equations of the structure is solved simultaneously. This consists of the linear global equations of motion and the nonlinear local constitutive evolutionary equations for every element. The system is converted into a state space form and the numerical solution is obtained implementing a variable-order solver based on numerical differentiation formulas (NDFs). In this way linearization at the global structural level is avoided facilitating considerably the solution. Furthermore, degradation phenomena are easily controlled through the model parameters at the element level and not in a macroscopic way which requires a computationally demanding bookkeeping mechanism. Numerical results are presented that validate the proposed formulation and verify its computational efficiency as compared to the standard elastoplastic finite element method and existing experimental data

    Progressive fracture of polymer matrix composite structures: A new approach

    Get PDF
    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive fracture of polymer matrix composite structures. The damage stages are quantified based on physics via composite mechanics while the degradation of the structural behavior is quantified via the finite element method. The approach account for all types of composite behavior, structures, load conditions, and fracture processes starting from damage initiation, to unstable propagation and to global structural collapse. Results of structural fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach. Parameters and guidelines are identified which can be used as criteria for structural fracture, inspection intervals, and retirement for cause. Generalization to structures made of monolithic metallic materials are outlined and lessons learned in undertaking the development of new approaches, in general, are summarized

    Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure

    Get PDF
    Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions

    Design and Analysis of Composite Panels

    Get PDF
    European aircraft industry demands for reduced development and operating costs, by 20% and 50% in the short and long term, respectively. Contributions to this aim are provided by the completed project POSICOSS (5thFP) and the running follow-up project COCOMAT (6thFP), both supported by the European Commission. As an important contribution to cost reduction a decrease in structural weight can be reached by exploiting considerable reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling up to collapse. The POSICOSS team developed fast procedures for postbuckling analysis of stiffened fibre composite panels, created comprehensive experimental data bases and derived design guidelines. COCOMAT builds up on the POSICOSS results and considers in addition the simulation of collapse by taking degradation into account. The results comprise an extended experimental data base, degradation models, improved certification and design tools as well as design guidelines. The projects POSICOSS and COCOMAT develop improved tools which are validated by experimental results obtained during the projects. Because the new tools must consider a wide range of different aspects a lot of different structures had to be tested. These structures were designed under different design objectives. For the design process the consortium applied already available simulation tools and brought in their own design experience. This paper deals with the design process within both projects and the analysis procedure applied within this task. It focuses on the experience of DLR on the design and analysis of stringer stiffened CFRP panels gained in the frame of these projects

    Correlating low energy impact damage with changes in modal parameters: diagnosis tools and FE validation

    Get PDF
    This paper presents a basic experimental technique and simplified FE based models for the detection, localization and quantification of impact damage in composite beams around the BVID level. Detection of damage is carried out by shift in modal parameters. Localization of damage is done by a topology optimization tool which showed that correct damage locations can be found rather efficiently for low-level damage. The novelty of this paper is that we develop an All In One (AIO) package dedicated to impact identification by modal analysis. The damaged zones in the FE models are updated by reducing the most sensitive material property in order to improve the experimental/numerical correlation of the frequency response functions. These approximate damage models(in term of equivalent rigidity) give us a simple degradation factor that can serve as a warning regarding structure safety

    On systematic approaches for interpreted information transfer of inspection data from bridge models to structural analysis

    Get PDF
    In conjunction with the improved methods of monitoring damage and degradation processes, the interest in reliability assessment of reinforced concrete bridges is increasing in recent years. Automated imagebased inspections of the structural surface provide valuable data to extract quantitative information about deteriorations, such as crack patterns. However, the knowledge gain results from processing this information in a structural context, i.e. relating the damage artifacts to building components. This way, transformation to structural analysis is enabled. This approach sets two further requirements: availability of structural bridge information and a standardized storage for interoperability with subsequent analysis tools. Since the involved large datasets are only efficiently processed in an automated manner, the implementation of the complete workflow from damage and building data to structural analysis is targeted in this work. First, domain concepts are derived from the back-end tasks: structural analysis, damage modeling, and life-cycle assessment. The common interoperability format, the Industry Foundation Class (IFC), and processes in these domains are further assessed. The need for usercontrolled interpretation steps is identified and the developed prototype thus allows interaction at subsequent model stages. The latter has the advantage that interpretation steps can be individually separated into either a structural analysis or a damage information model or a combination of both. This approach to damage information processing from the perspective of structural analysis is then validated in different case studies

    Finite volume analysis of reinforced concrete structure cracking using a thermo-plastic-damage model

    Get PDF
    This paper proposes modifications to the phenomenological model formulation called CDPM2, developed by Grassl et al. [1]. The proposed modifications are designed to enhance model performance with coupling to temperature effects. A very strong coupling between nonlinear elasticity, plasticity, nonlocal damage evolution and temperature gradient is used to simulate arbitrary crack propagation. The use of FVM to model solid damage is a numerical challenge. This approach presents some advantages such as: ensuring that discretization is conservative even when the geometry is changing; providing a simple formulation that can be obtained directly from a difference method; and employing unstructured meshes. Most authors have neglected the nonlinearity of concrete in the elastic domain from the start of loading to the plastic domain. In this paper we confirm that concrete rheology is not linear even under low loading. Also, since the so-called fracture energy is a key parameter needed to determine the size of cracks and how they propagate in space, we consider that the fracture energy is both material and geometrical parameter dependent. For this reason, we developed a new approach which includes adaptive mesh, nonlinear rheology and thermal effects to re-calculate fracture energy at each time step. Many authors use a constant value obtained from experiments to calculate fracture energy; others use a numerical correlation. In this study, the fracture energy parameter is not constant and can vary with temperature or/and with a change in geometry due to concrete failure. As is well known, the mesh quality of complex geometries is very important for making accurate predictions. A new meshing tool was developed using the C++ programming language. This tool is faster, more accurate and produces a high-quality structured mesh. The predictions obtained were compared to a wide variety of experimental data and showed good agreement
    • …
    corecore