86 research outputs found

    On the Multiple Packing Densities of Triangles

    Full text link
    Given a convex disk KK and a positive integer kk, let δTk(K)\delta_T^k(K) and δLk(K)\delta_L^k(K) denote the kk-fold translative packing density and the kk-fold lattice packing density of KK, respectively. Let TT be a triangle. In a very recent paper, K. Sriamorn proved that δLk(T)=2k22k+1\delta_L^k(T)=\frac{2k^2}{2k+1}. In this paper, I will show that δTk(T)=δLk(T)\delta_T^k(T)=\delta_L^k(T).Comment: arXiv admin note: text overlap with arXiv:1412.539

    Claude Ambrose Rogers. 1 November 1920 — 5 December 2005

    Get PDF
    Claude Ambrose Rogers and his identical twin brother, Stephen Clifford, were born in Cambridge in 1920 and came from a long scientific heritage. Their great-great-grandfather, Davies Gilbert, was President of the Royal Society from 1827 to 1830; their father was a Fellow of the Society and distinguished for his work in tropical medicine. After attending boarding school at Berkhamsted with his twin brother from the age of 8 years, Ambrose, who had developed very different scientific interests from those of his father, entered University College London in 1938 to study mathematics. He completed the course in 1940 and graduated in 1941 with first-class honours, by which time the UK had been at war with Germany for two years. He joined the Applied Ballistics Branch of the Ministry of Supply in 1940, where he worked until 1945, apparently on calculations using radar data to direct anti-aircraft fire. However, this did not lead to research interests in applied mathematics, but rather to several areas of pure mathematics. Ambrose's PhD research was at Birkbeck College, London, under the supervision of L. S. Bosanquet and R. G. Cooke, his first paper being on the subject of geometry of numbers. Later, Rogers became known for his very wide interests in mathematics, including not only geometry of numbers but also Hausdorff measures, convexity and analytic sets, as described in this memoir. Ambrose was married in 1952 to Joan North, and they had two daughters, Jane and Petra, to form a happy family

    Notions of denseness

    Full text link
    The notion of a completely saturated packing [Fejes Toth, Kuperberg and Kuperberg, Highly saturated packings and reduced coverings, Monats. Math. 125 (1998) 127-145] is a sharper version of maximum density, and the analogous notion of a completely reduced covering is a sharper version of minimum density. We define two related notions: uniformly recurrent and weakly recurrent dense packings, and diffusively dominant packings. Every compact domain in Euclidean space has a uniformly recurrent dense packing. If the domain self-nests, such a packing is limit-equivalent to a completely saturated one. Diffusive dominance is yet sharper than complete saturation and leads to a better understanding of n-saturation.Comment: Published in Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol4/paper9.abs.htm

    Relaxed Disk Packing

    Get PDF
    Motivated by biological questions, we study configurations of equal-sized disks in the Euclidean plane that neither pack nor cover. Measuring the quality by the probability that a random point lies in exactly one disk, we show that the regular hexagonal grid gives the maximum among lattice configurations.Comment: 8 pages => 5 pages of main text plus 3 pages in appendix. Submitted to CCCG 201

    Lower Bound on Translative Covering Density of Tetrahedra

    Full text link
    In this paper, we present the first nontrivial lower bound on the translative covering density of tetrahedra. To this end, we show the lower bound, in any translative covering of tetrahedra, on the density relative to a given cube. The resulting lower bound on the translative covering density of tetrahedra is 1+1.227×10−31+1.227\times10^{-3}
    • …
    corecore