282 research outputs found

    A Minimax Converse for Quantum Channel Coding

    Full text link
    We prove a one-shot "minimax" converse bound for quantum channel coding assisted by positive partial transpose channels between sender and receiver. The bound is similar in spirit to the converse by Polyanskiy, Poor, and Verdu [IEEE Trans. Info. Theory 56, 2307-2359 (2010)] for classical channel coding, and also enjoys the saddle point property enabling the order of optimizations to be interchanged. Equivalently, the bound can be formulated as a semidefinite program satisfying strong duality. The convex nature of the bound implies channel symmetries can substantially simplify the optimization, enabling us to explicitly compute the finite blocklength behavior for several simple qubit channels. In particular, we find that finite blocklength converse statements for the classical erasure channel apply to the assisted quantum erasure channel, while bounds for the classical binary symmetric channel apply to both the assisted dephasing and depolarizing channels. This implies that these qubit channels inherit statements regarding the asymptotic limit of large blocklength, such as the strong converse or second-order converse rates, from their classical counterparts. Moreover, for the dephasing channel, the finite blocklength bounds are as tight as those for the classical binary symmetric channel, since coding for classical phase errors yields equivalently-performing unassisted quantum codes.Comment: merged with arXiv:1504.04617 version 1 ; see version

    Semidefinite programming converse bounds for classical communication over quantum channels

    Full text link
    © 2017 IEEE. We study the classical communication over quantum channels when assisted by no-signalling (NS) and PPT-preserving (PPT) codes. We first show that both the optimal success probability of a given transmission rate and one-shot-error capacity can be formalized as semidefinite programs (SDPs) when assisted by NS or NS∩PPT codes. Based on this, we derive SDP finite blocklength converse bounds for general quantum channels, which also reduce to the converse bound of Polyanskiy, Poor, and Verdii for classical channels. Furthermore, we derive an SDP strong converse bound for the classical capacity of a general quantum channel: for any code with a rate exceeding this bound, the optimal success probability vanishes exponentially fast as the number of channel uses increases. In particular, applying our efficiently computable bound, we derive improved upper bounds to the classical capacity of the amplitude damping channels and also establish the strong converse property for a new class of quantum channels

    Semidefinite programming strong converse bounds for classical capacity

    Full text link
    © 2017 IEEE. We investigate the classical communication over quantum channels when assisted by no-signaling and positive-partial-transpose-preserving (PPT) codes, for which both the optimal success probability of a given transmission rate and the one-shot -error capacity are formalized as semidefinite programs (SDPs). Based on this, we obtain improved SDP finite blocklength converse bounds of general quantum channels for entanglement-assisted codes and unassisted codes. Furthermore, we derive two SDP strong converse bounds for the classical capacity of general quantum channels: for any code with a rate exceeding either of the two bounds of the channel, the success probability vanishes exponentially fast as the number of channel uses increases. In particular, applying our efficiently computable bounds, we derive an improved upper bound on the classical capacity of the amplitude damping channel. We also establish the strong converse property for the classical and private capacities of a new class of quantum channels. We finally study the zero-error setting and provide efficiently computable upper bounds on the one-shot zero-error capacity of a general quantum channel

    One-shot lossy quantum data compression

    Get PDF
    We provide a framework for one-shot quantum rate distortion coding, in which the goal is to determine the minimum number of qubits required to compress quantum information as a function of the probability that the distortion incurred upon decompression exceeds some specified level. We obtain a one-shot characterization of the minimum qubit compression size for an entanglement-assisted quantum rate-distortion code in terms of the smooth max-information, a quantity previously employed in the one-shot quantum reverse Shannon theorem. Next, we show how this characterization converges to the known expression for the entanglement-assisted quantum rate distortion function for asymptotically many copies of a memoryless quantum information source. Finally, we give a tight, finite blocklength characterization for the entanglement-assisted minimum qubit compression size of a memoryless isotropic qubit source subject to an average symbol-wise distortion constraint.Comment: 36 page

    On converse bounds for classical communication over quantum channels

    Full text link
    We explore several new converse bounds for classical communication over quantum channels in both the one-shot and asymptotic regimes. First, we show that the Matthews-Wehner meta-converse bound for entanglement-assisted classical communication can be achieved by activated, no-signalling assisted codes, suitably generalizing a result for classical channels. Second, we derive a new efficiently computable meta-converse on the amount of classical information unassisted codes can transmit over a single use of a quantum channel. As applications, we provide a finite resource analysis of classical communication over quantum erasure channels, including the second-order and moderate deviation asymptotics. Third, we explore the asymptotic analogue of our new meta-converse, the Υ\Upsilon-information of the channel. We show that its regularization is an upper bound on the classical capacity, which is generally tighter than the entanglement-assisted capacity and other known efficiently computable strong converse bounds. For covariant channels we show that the Υ\Upsilon-information is a strong converse bound.Comment: v3: published version; v2: 18 pages, presentation and results improve

    Quantum Channel Capacities Per Unit Cost

    Get PDF
    Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for bosonic quantum channels, the cost associated with an input state is the number of photons, which is proportional to the energy consumed. In such a setting, it is often useful to know the maximum amount of information that can be reliably transmitted per cost incurred. This is known as the capacity per unit cost. In this paper, we generalize the capacity per unit cost to various communication tasks involving a quantum channel such as classical communication, entanglement-assisted classical communication, private communication, and quantum communication. For each task, we define the corresponding capacity per unit cost and derive a formula for it analogous to that of the usual capacity. Furthermore, for the special and natural case in which there is a zero-cost state, we obtain expressions in terms of an optimized relative entropy involving the zero-cost state. For each communication task, we construct an explicit pulse-position-modulation coding scheme that achieves the capacity per unit cost. Finally, we compute capacities per unit cost for various bosonic Gaussian channels and introduce the notion of a blocklength constraint as a proposed solution to the long-standing issue of infinite capacities per unit cost. This motivates the idea of a blocklength-cost duality, on which we elaborate in depth.Comment: v3: 18 pages, 2 figure

    On privacy amplification, lossy compression, and their duality to channel coding

    Full text link
    We examine the task of privacy amplification from information-theoretic and coding-theoretic points of view. In the former, we give a one-shot characterization of the optimal rate of privacy amplification against classical adversaries in terms of the optimal type-II error in asymmetric hypothesis testing. This formulation can be easily computed to give finite-blocklength bounds and turns out to be equivalent to smooth min-entropy bounds by Renner and Wolf [Asiacrypt 2005] and Watanabe and Hayashi [ISIT 2013], as well as a bound in terms of the EγE_\gamma divergence by Yang, Schaefer, and Poor [arXiv:1706.03866 [cs.IT]]. In the latter, we show that protocols for privacy amplification based on linear codes can be easily repurposed for channel simulation. Combined with known relations between channel simulation and lossy source coding, this implies that privacy amplification can be understood as a basic primitive for both channel simulation and lossy compression. Applied to symmetric channels or lossy compression settings, our construction leads to proto- cols of optimal rate in the asymptotic i.i.d. limit. Finally, appealing to the notion of channel duality recently detailed by us in [IEEE Trans. Info. Theory 64, 577 (2018)], we show that linear error-correcting codes for symmetric channels with quantum output can be transformed into linear lossy source coding schemes for classical variables arising from the dual channel. This explains a "curious duality" in these problems for the (self-dual) erasure channel observed by Martinian and Yedidia [Allerton 2003; arXiv:cs/0408008] and partly anticipates recent results on optimal lossy compression by polar and low-density generator matrix codes.Comment: v3: updated to include equivalence of the converse bound with smooth entropy formulations. v2: updated to include comparison with the one-shot bounds of arXiv:1706.03866. v1: 11 pages, 4 figure

    Beta-Beta Bounds: Finite-Blocklength Analog of the Golden Formula

    Get PDF
    It is well known that the mutual information between two random variables can be expressed as the difference of two relative entropies that depend on an auxiliary distribution, a relation sometimes referred to as the golden formula. This paper is concerned with a finite-blocklength extension of this relation. This extension consists of two elements: 1) a finite-blocklength channel-coding converse bound by Polyanskiy and Verd\'{u} (2014), which involves the ratio of two Neyman-Pearson β\beta functions (beta-beta converse bound); and 2) a novel beta-beta channel-coding achievability bound, expressed again as the ratio of two Neyman-Pearson β\beta functions. To demonstrate the usefulness of this finite-blocklength extension of the golden formula, the beta-beta achievability and converse bounds are used to obtain a finite-blocklength extension of Verd\'{u}'s (2002) wideband-slope approximation. The proof parallels the derivation of the latter, with the beta-beta bounds used in place of the golden formula. The beta-beta (achievability) bound is also shown to be useful in cases where the capacity-achieving output distribution is not a product distribution due to, e.g., a cost constraint or structural constraints on the codebook, such as orthogonality or constant composition. As an example, the bound is used to characterize the channel dispersion of the additive exponential-noise channel and to obtain a finite-blocklength achievability bound (the tightest to date) for multiple-input multiple-output Rayleigh-fading channels with perfect channel state information at the receiver.Comment: to appear in IEEE Transactions on Information Theor
    • …
    corecore