423 research outputs found

    An expressive completeness theorem for coalgebraic modal mu-calculi

    Get PDF
    Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. We then consider invariance under behavioral equivalence of MSO-formulas. More specifically, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of the monadic second-order language for a given functor. Using automatatheoretic techniques and building on recent results by the third author, we show that in order to provide such a characterization result it suffices to find what we call an adequate uniform construction for the coalgebraic type functor. As direct applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem for the modal mu-calculus, avoiding the use of syntactic normal forms, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors (including the "game functor"). As a more involved application, involving additional non-trivial ideas, we also derive a characterization theorem for the monotone modal mu-calculus, with respect to a natural monadic second-order language for monotone neighborhood models.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0721

    Acta Cybernetica : Volume 18. Number 1.

    Get PDF

    Operator Precedence Languages: Their Automata-Theoretic and Logic Characterization

    Get PDF
    Operator precedence languages were introduced half a century ago by Robert Floyd to support deterministic and efficient parsing of context-free languages. Recently, we renewed our interest in this class of languages thanks to a few distinguishing properties that make them attractive for exploiting various modern technologies. Precisely, their local parsability enables parallel and incremental parsing, whereas their closure properties make them amenable to automatic verification techniques, including model checking. In this paper we provide a fairly complete theory of this class of languages: we introduce a class of automata with the same recognizing power as the generative power of their grammars; we provide a characterization of their sentences in terms of monadic second-order logic as has been done in previous literature for more restricted language classes such as regular, parenthesis, and input-driven ones; we investigate preserved and lost properties when extending the language sentences from finite length to infinite length (omegaomega-languages). As a result, we obtain a class of languages that enjoys many of the nice properties of regular languages (closure and decidability properties, logic characterization) but is considerably larger than other families---typically parenthesis and input-driven ones---with the same properties, covering “almost” all deterministic languages
    • …
    corecore