124 research outputs found

    Backward Reachability of Array-based Systems by SMT solving: Termination and Invariant Synthesis

    Full text link
    The safety of infinite state systems can be checked by a backward reachability procedure. For certain classes of systems, it is possible to prove the termination of the procedure and hence conclude the decidability of the safety problem. Although backward reachability is property-directed, it can unnecessarily explore (large) portions of the state space of a system which are not required to verify the safety property under consideration. To avoid this, invariants can be used to dramatically prune the search space. Indeed, the problem is to guess such appropriate invariants. In this paper, we present a fully declarative and symbolic approach to the mechanization of backward reachability of infinite state systems manipulating arrays by Satisfiability Modulo Theories solving. Theories are used to specify the topology and the data manipulated by the system. We identify sufficient conditions on the theories to ensure the termination of backward reachability and we show the completeness of a method for invariant synthesis (obtained as the dual of backward reachability), again, under suitable hypotheses on the theories. We also present a pragmatic approach to interleave invariant synthesis and backward reachability so that a fix-point for the set of backward reachable states is more easily obtained. Finally, we discuss heuristics that allow us to derive an implementation of the techniques in the model checker MCMT, showing remarkable speed-ups on a significant set of safety problems extracted from a variety of sources.Comment: Accepted for publication in Logical Methods in Computer Scienc

    The complexity of XPath query evaluation and XML typing

    Get PDF

    Predictability: a way to characterize Complexity

    Full text link
    Different aspects of the predictability problem in dynamical systems are reviewed. The deep relation among Lyapunov exponents, Kolmogorov-Sinai entropy, Shannon entropy and algorithmic complexity is discussed. In particular, we emphasize how a characterization of the unpredictability of a system gives a measure of its complexity. Adopting this point of view, we review some developments in the characterization of the predictability of systems showing different kind of complexity: from low-dimensional systems to high-dimensional ones with spatio-temporal chaos and to fully developed turbulence. A special attention is devoted to finite-time and finite-resolution effects on predictability, which can be accounted with suitable generalization of the standard indicators. The problems involved in systems with intrinsic randomness is discussed, with emphasis on the important problems of distinguishing chaos from noise and of modeling the system. The characterization of irregular behavior in systems with discrete phase space is also considered.Comment: 142 Latex pgs. 41 included eps figures, submitted to Physics Reports. Related information at this http://axtnt2.phys.uniroma1.i

    Elements of computability, decidability, and complexity (Third edition)

    Get PDF
    These lecture notes are intended to introduce the reader to the basic notions of computability theory, decidability, and complexity. More information on these subjects can be found in classical books such as [Cut80,Dav58,Her69,HoU79,Rog67]. The results reported in these notes are taken from those books and in various parts we closely follow their style of presentation. The reader is encouraged to look at those books for improving his/her knowledge on these topics. Some parts of the chapter on complexity are taken from the lecture notes of a beautiful course given by Prof. Leslie Valiant at Edinburgh University, Scotland, in 1979. It was, indeed, a very stimulating and enjoyable course. For the notions of Predicate Calculus we have used in this book the reader may refer to [Men87]. I would like to thank Dr. Maurizio Proietti at IASI-CNR (Roma, Italy), my colleagues, and my students at the University of Roma Tor Vergata and, in particular, Michele Martone. They have been for me a source of continuous inspiration and enthusiasm. Finally, I would like to thank Dr. Gioacchino Onorati and Lorenzo Costantini of the Aracne Publishing Company for their helpful cooperation

    Logic and Automata

    Get PDF
    Mathematical logic and automata theory are two scientific disciplines with a fundamentally close relationship. The authors of Logic and Automata take the occasion of the sixtieth birthday of Wolfgang Thomas to present a tour d'horizon of automata theory and logic. The twenty papers in this volume cover many different facets of logic and automata theory, emphasizing the connections to other disciplines such as games, algorithms, and semigroup theory, as well as discussing current challenges in the field
    • …
    corecore