1,173 research outputs found

    An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.

    Get PDF
    We often interact with our environment through manual handling of objects and exploration of their properties. Object properties (OP), such as texture, stiffness, size, shape, temperature, weight, and orientation provide necessary information to successfully perform interactions. The human haptic perception system plays a key role in this. As virtual reality (VR) has been a growing field of interest with many applications, adding haptic feedback to virtual experiences is another step towards more realistic virtual interactions. However, integrating haptics in a realistic manner, requires complex technological solutions and actual user-testing in virtual environments (VEs) for verification. This review provides a comprehensive overview of recent wearable haptic devices (HDs) categorized by the OP exploration for which they have been verified in a VE. We found 13 studies which specifically addressed user-testing of wearable HDs in healthy subjects. We map and discuss the different technological solutions for different OP exploration which are useful for the design of future haptic object interactions in VR, and provide future recommendations

    Doctor of Philosophy

    Get PDF
    dissertationVirtual environments provide a consistent and relatively inexpensive method of training individuals. They often include haptic feedback in the form of forces applied to a manipulandum or thimble to provide a more immersive and educational experience. However, the limited haptic feedback provided in these systems tends to be restrictive and frustrating to use. Providing tactile feedback in addition to this kinesthetic feedback can enhance the user's ability to manipulate and interact with virtual objects while providing a greater level of immersion. This dissertation advances the state-of-the-art by providing a better understanding of tactile feedback and advancing combined tactilekinesthetic systems. The tactile feedback described within this dissertation is provided by a finger-mounted device called the contact location display (CLD). Rather than displaying the entire contact surface, the device displays (feeds back) information only about the center of contact between the user's finger and a virtual surface. In prior work, the CLD used specialized two-dimensional environments to provide smooth tactile feedback. Using polygonal environments would greatly enhance the device's usefulness. However, the surface discontinuities created by the facets on these models are rendered through the CLD, regardless of traditional force shading algorithms. To address this issue, a haptic shading algorithm was developed to provide smooth tactile and kinesthetic interaction with general polygonal models. Two experiments were used to evaluate the shading algorithm. iv To better understand the design requirements of tactile devices, three separate experiments were run to evaluate the perception thresholds for cue localization, backlash, and system delay. These experiments establish quantitative design criteria for tactile devices. These results can serve as the maximum (i.e., most demanding) device specifications for tactile-kinesthetic haptic systems where the user experiences tactile feedback as a function of his/her limb motions. Lastly, a revision of the CLD was constructed and evaluated. By taking the newly evaluated design criteria into account, the CLD device became smaller and lighter weight, while providing a full two degree-of-freedom workspace that covers the bottom hemisphere of the finger. Two simple manipulation experiments were used to evaluate the new CLD device

    A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.

    Get PDF
    Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden

    Haptic Feedback Relocation from the Fingertips to the Wrist for Two-Finger Manipulation in Virtual Reality

    Full text link
    Relocation of haptic feedback from the fingertips to the wrist has been considered as a way to enable haptic interaction with mixed reality virtual environments while leaving the fingers free for other tasks. We present a pair of wrist-worn tactile haptic devices and a virtual environment to study how various mappings between fingers and tactors affect task performance. The haptic feedback rendered to the wrist reflects the interaction forces occurring between a virtual object and virtual avatars controlled by the index finger and thumb. We performed a user study comparing four different finger-to-tactor haptic feedback mappings and one no-feedback condition as a control. We evaluated users' ability to perform a simple pick-and-place task via the metrics of task completion time, path length of the fingers and virtual cube, and magnitudes of normal and shear forces at the fingertips. We found that multiple mappings were effective, and there was a greater impact when visual cues were limited. We discuss the limitations of our approach and describe next steps toward multi-degree-of-freedom haptic rendering for wrist-worn devices to improve task performance in virtual environments.Comment: 6 pages, 9 figures, 1 table, submitted and accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2022 Conferenc

    Effects of Haptic Feedback on the Wrist during Virtual Manipulation

    Full text link
    As an alternative to thimble devices for the fingertips, we investigate haptic systems that apply stimulus to the user's forearm. Our aim is to provide effective interaction with virtual objects, despite the lack of co-location of virtual and real-world contacts, while taking advantage of relatively large skin area and ease of mounting on the forearm. We developed prototype wearable haptic devices that provide skin deformation in the normal and shear directions, and performed a user study to determine the effects of haptic feedback in different directions and at different locations near the wrist during virtual manipulation. Participants performed significantly better while discriminating stiffness values of virtual objects with normal forces compared to shear forces. We found no differences in performance or participant preferences with regard to stimulus on the dorsal, ventral, or both sides of the forearm.Comment: 7 pages, submitted conference paper for IEEE Haptics Symposium 202
    • …
    corecore