852 research outputs found

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    A Review of pedestrian indoor positioning systems for mass market applications

    Get PDF
    In the last decade, the interest in Indoor Location Based Services (ILBS) has increased stimulating the development of Indoor Positioning Systems (IPS). In particular, ILBS look for positioning systems that can be applied anywhere in the world for millions of users, that is, there is a need for developing IPS for mass market applications. Those systems must provide accurate position estimations with minimum infrastructure cost and easy scalability to different environments. This survey overviews the current state of the art of IPSs and classifies them in terms of the infrastructure and methodology employed. Finally, each group is reviewed analysing its advantages and disadvantages and its applicability to mass market applications

    Location Estimation in Wireless Communication Systems

    Get PDF
    Localization has become a key enabling technology in many emerging wireless applications and services. One of the most challenging problems in wireless localization technologies is that the performance is easily affected by the signal propagation environment. When the direct path between transmitter and receiver is obstructed, the signal measurement error for the localization process will increase significantly. Considering this problem, we first propose a novel algorithm which can automatically detect and remove the obstruction and improve the localization performance in complex environment. Besides the environmental dependency, the accuracy of target location estimation is highly sensitive to the positions of reference nodes. In this thesis, we also study on the reference node placement, and derive an optimum deployment scheme which can provide the best localization accuracy. Another challenge of wireless localization is due to insufficient number of reference nodes available in the target\u27s communication range. In this circumstance, we finally utilize the internal sensors in today\u27s smartphones to provide additional information for localization purpose, and propose a novel algorithm which can combine the location dependent parameters measured from sensors and available reference nodes together. The combined localization algorithm can overcome the error accumulation from sensor with the help of only few number of reference nodes

    Improved Localization Algorithms in Indoor Wireless Environment

    Get PDF
    Localization has been considered as an important precondition for the location-dependent applications such as mobile tracking and navigation.To obtain specific location information, we usually make use of Global Positioning System(GPS), which is the most common plat- form to acquire localization information in outdoor environments. When targets are in indoor environment, however, the GPS signal is usually blocked, so we also consider other assisted positioning techniques in order to obtain accurate position of targets. In this thesis, three different schemes in indoor environment are proposed to minimize localization error by placing refer- ence nodes in optimum locations, combining the localization information from accelerometer sensor in smartphone with Received Signal Strength (RSS) from reference nodes, and utilizing frequency diversity in Wireless Fidelity (WiFi) environment. Deployments of reference nodes are vital for locating nearby targets since they are used to estimate the distances from them to the targets. A reference nodes’ placement scheme based on minimizing the average mean square error of localization over a certain region is proposed in this thesis first and is applied in different localization regions which are circular, square and hexagonal for illustration of the flexibility of the proposed scheme. Equipped with accelerometer sensor, smartphone provides useful information which out- puts accelerations in three different directions. Combining acceleration information from smart- phones and signal strength information from reference nodes to prevent the accumulated error from accelerometer is studied in this thesis. The combined locating error is narrowed by as- signing different weights to localization information from accelerometer and reference nodes. In indoor environment, RSS technology based localization is the most common way to imply since it require less additional hardware compared to other localization technologies. However, RSS can be affected greatly by complex circumstance as well as carrier frequency. Utilization of diverse frequencies to improve localization performance is proposed in the end of this thesis along with some experiments applied on Software Defined Platform (SDR)

    Robust and Efficient Residential Indoor Localisation for Healthcare

    Get PDF

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Technologies and solutions for location-based services in smart cities: past, present, and future

    Get PDF
    Location-based services (LBS) in smart cities have drastically altered the way cities operate, giving a new dimension to the life of citizens. LBS rely on location of a device, where proximity estimation remains at its core. The applications of LBS range from social networking and marketing to vehicle-toeverything communications. In many of these applications, there is an increasing need and trend to learn the physical distance between nearby devices. This paper elaborates upon the current needs of proximity estimation in LBS and compares them against the available Localization and Proximity (LP) finding technologies (LP technologies in short). These technologies are compared for their accuracies and performance based on various different parameters, including latency, energy consumption, security, complexity, and throughput. Hereafter, a classification of these technologies, based on various different smart city applications, is presented. Finally, we discuss some emerging LP technologies that enable proximity estimation in LBS and present some future research areas
    corecore