92 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    OSEM : occupant-specific energy monitoring.

    Get PDF
    Electricity has become prevalent in modern day lives. Almost all the comforts people enjoy today, like home heating and cooling, indoor and outdoor lighting, computers, home and office appliances, depend on electricity. Moreover, the demand for electricity is increasing across the globe. The increasing demand for electricity and the increased awareness about carbon footprints have raised interest in the implementation of energy efficiency measures. A feasible remedy to conserve energy is to provide energy consumption feedback. This approach has suggested the possibility of considerable reduction in the energy consumption, which is in the range of 3.8% to 12%. Currently, research is on-going to monitor energy consumption of individual appliances. However, various approaches studied so far are limited to group-level feedback. The limitation of this approach is that the occupant of a house/building is unaware of his/her energy consumption pattern and has no information regarding how his/her energy-related behavior is affecting the overall energy consumption of a house/building. Energy consumption of a house/building largely depends on the energy-related behavior of individual occupants. Therefore, research in the area of individualized energy-usage feedback is essential. The OSEM (Occupant-Specific Energy Monitoring) system presented in this work is capable of monitoring individualized energy usage. OSEM system uses the electromagnetic field (EMF) radiated by appliances as a signature for appliance identification. An EMF sensor was designed and fabricated to collect the EMF radiated by appliances. OSEM uses proximity sensing to confirm the energy-related activity. Once confirmed, this activity is attributed to the occupant who initiated it. Bluetooth Low Energy technology was used for proximity sensing. This OSEM system would provide a detailed energy consumption report of individual occupants, which would help the occupants understand their energy consumption patterns and in turn encourage them to undertake energy conservation measures

    Fifth ERCIM workshop on e-mobility

    Get PDF
    • …
    corecore