21 research outputs found

    Phonon-mediated negative differential conductance in molecular quantum dots

    Full text link
    Transport through a single molecular conductor is considered, showing negative differential conductance behavior associated with phonon-mediated electron tunneling processes. This theoretical work is motivated by a recent experiment by Leroy et al. using a carbon nanotube contacted by an STM tip [Nature {\bf 432}, 371 (2004)], where negative differential conductance of the breathing mode phonon side peaks could be observed. A peculiarity of this system is that the tunneling couplings which inject electrons and those which collect them on the substrate are highly asymmetrical. A quantum dot model is used, coupling a single electronic level to a local phonon, forming polaron levels. A "half-shuttle" mechanism is also introduced. A quantum kinetic formulation allows to derive rate equations. Assuming asymmetric tunneling rates, and in the absence of the half-shuttle coupling, negative differential conductance is obtained for a wide range of parameters. A detailed explanation of this phenomenon is provided, showing that NDC is maximal for intermediate electron-phonon coupling. In addition, in absence of a gate, the "floating" level results in two distinct lengths for the current plateaus, related to the capacitive couplings at the two junctions. It is shown that the "half-shuttle" mechanism tends to reinforce the negative differential regions, but it cannot trigger this behavior on its own

    Face recognition by means of advanced contributions in machine learning

    Get PDF
    Face recognition (FR) has been extensively studied, due to both scientific fundamental challenges and current and potential applications where human identification is needed. FR systems have the benefits of their non intrusiveness, low cost of equipments and no useragreement requirements when doing acquisition, among the most important ones. Nevertheless, despite the progress made in last years and the different solutions proposed, FR performance is not yet satisfactory when more demanding conditions are required (different viewpoints, blocked effects, illumination changes, strong lighting states, etc). Particularly, the effect of such non-controlled lighting conditions on face images leads to one of the strongest distortions in facial appearance. This dissertation addresses the problem of FR when dealing with less constrained illumination situations. In order to approach the problem, a new multi-session and multi-spectral face database has been acquired in visible, Near-infrared (NIR) and Thermal infrared (TIR) spectra, under different lighting conditions. A theoretical analysis using information theory to demonstrate the complementarities between different spectral bands have been firstly carried out. The optimal exploitation of the information provided by the set of multispectral images has been subsequently addressed by using multimodal matching score fusion techniques that efficiently synthesize complementary meaningful information among different spectra. Due to peculiarities in thermal images, a specific face segmentation algorithm has been required and developed. In the final proposed system, the Discrete Cosine Transform as dimensionality reduction tool and a fractional distance for matching were used, so that the cost in processing time and memory was significantly reduced. Prior to this classification task, a selection of the relevant frequency bands is proposed in order to optimize the overall system, based on identifying and maximizing independence relations by means of discriminability criteria. The system has been extensively evaluated on the multispectral face database specifically performed for our purpose. On this regard, a new visualization procedure has been suggested in order to combine different bands for establishing valid comparisons and giving statistical information about the significance of the results. This experimental framework has more easily enabled the improvement of robustness against training and testing illumination mismatch. Additionally, focusing problem in thermal spectrum has been also addressed, firstly, for the more general case of the thermal images (or thermograms), and then for the case of facialthermograms from both theoretical and practical point of view. In order to analyze the quality of such facial thermograms degraded by blurring, an appropriate algorithm has been successfully developed. Experimental results strongly support the proposed multispectral facial image fusion, achieving very high performance in several conditions. These results represent a new advance in providing a robust matching across changes in illumination, further inspiring highly accurate FR approaches in practical scenarios.El reconeixement facial (FR) ha estat 脿mpliament estudiat, degut tant als reptes fonamentals cient铆fics que suposa com a les aplicacions actuals i futures on requereix la identificaci贸 de les persones. Els sistemes de reconeixement facial tenen els avantatges de ser no intrusius,presentar un baix cost dels equips d鈥檃dquisici贸 i no la no necessitat d鈥檃utoritzaci贸 per part de l鈥檌ndividu a l鈥檋ora de realitzar l'adquisici贸, entre les m茅s importants. De totes maneres i malgrat els aven莽os aconseguits en els darrers anys i les diferents solucions proposades, el rendiment del FR encara no resulta satisfactori quan es requereixen condicions m茅s exigents (diferents punts de vista, efectes de bloqueig, canvis en la il路luminaci贸, condicions de llum extremes, etc.). Concretament, l'efecte d'aquestes variacions no controlades en les condicions d'il路luminaci贸 sobre les imatges facials condueix a una de les distorsions m茅s accentuades sobre l'aparen莽a facial. Aquesta tesi aborda el problema del FR en condicions d'il路luminaci贸 menys restringides. Per tal d'abordar el problema, hem adquirit una nova base de dades de cara multisessi贸 i multiespectral en l'espectre infraroig visible, infraroig proper (NIR) i t猫rmic (TIR), sota diferents condicions d'il路luminaci贸. En primer lloc s'ha dut a terme una an脿lisi te貌rica utilitzant la teoria de la informaci贸 per demostrar la complementarietat entre les diferents bandes espectrals objecte d鈥檈studi. L'貌ptim aprofitament de la informaci贸 proporcionada pel conjunt d'imatges multiespectrals s'ha abordat posteriorment mitjan莽ant l'煤s de t猫cniques de fusi贸 de puntuaci贸 multimodals, capaces de sintetitzar de manera eficient el conjunt d鈥檌nformaci贸 significativa complement脿ria entre els diferents espectres. A causa de les caracter铆stiques particulars de les imatges t猫rmiques, s鈥檋a requerit del desenvolupament d鈥檜n algorisme espec铆fic per la segmentaci贸 de les mateixes. En el sistema proposat final, s鈥檋a utilitzat com a eina de reducci贸 de la dimensionalitat de les imatges, la Transformada del Cosinus Discreta i una dist脿ncia fraccional per realitzar les tasques de classificaci贸 de manera que el cost en temps de processament i de mem貌ria es va reduir de forma significa. Pr猫viament a aquesta tasca de classificaci贸, es proposa una selecci贸 de les bandes de freq眉猫ncies m茅s rellevants, basat en la identificaci贸 i la maximitzaci贸 de les relacions d'independ猫ncia per mitj脿 de criteris discriminabilitat, per tal d'optimitzar el conjunt del sistema. El sistema ha estat 脿mpliament avaluat sobre la base de dades de cara multiespectral, desenvolupada pel nostre prop貌sit. En aquest sentit s'ha suggerit l鈥櫭簊 d鈥檜n nou procediment de visualitzaci贸 per combinar diferents bandes per poder establir comparacions v脿lides i donar informaci贸 estad铆stica sobre el significat dels resultats. Aquest marc experimental ha perm猫s m茅s f脿cilment la millora de la robustesa quan les condicions d鈥檌l路luminaci贸 eren diferents entre els processos d鈥檈ntrament i test. De forma complement脿ria, s鈥檋a tractat la problem脿tica de l鈥檈nfocament de les imatges en l'espectre t猫rmic, en primer lloc, pel cas general de les imatges t猫rmiques (o termogrames) i posteriorment pel cas concret dels termogrames facials, des dels punt de vista tant te貌ric com pr脿ctic. En aquest sentit i per tal d'analitzar la qualitat d鈥檃quests termogrames facials degradats per efectes de desenfocament, s'ha desenvolupat un 煤ltim algorisme. Els resultats experimentals recolzen fermament que la fusi贸 d'imatges facials multiespectrals proposada assoleix un rendiment molt alt en diverses condicions d鈥檌l路luminaci贸. Aquests resultats representen un nou aven莽 en l鈥檃portaci贸 de solucions robustes quan es contemplen canvis en la il路luminaci贸, i esperen poder inspirar a futures implementacions de sistemes de reconeixement facial precisos en escenaris no controlats.Postprint (published version

    Wavelets in control engineering

    Get PDF

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book

    Radon Projections as Image Descriptors for Content-Based Retrieval of Medical Images

    Get PDF
    Clinical analysis and medical diagnosis of diverse diseases adopt medical imaging techniques to empower specialists to perform their tasks by visualizing internal body organs and tissues for classifying and treating diseases at an early stage. Content-Based Image Retrieval (CBIR) systems are a set of computer vision techniques to retrieve similar images from a large database based on proper image representations. Particularly in radiology and histopathology, CBIR is a promising approach to effectively screen, understand, and retrieve images with similar level of semantic descriptions from a database of previously diagnosed cases to provide physicians with reliable assistance for diagnosis, treatment planning and research. Over the past decade, the development of CBIR systems in medical imaging has expedited due to the increase in digitized modalities, an increase in computational efficiency (e.g., availability of GPUs), and progress in algorithm development in computer vision and artificial intelligence. Hence, medical specialists may use CBIR prototypes to query similar cases from a large image database based solely on the image content (and no text). Understanding the semantics of an image requires an expressive descriptor that has the ability to capture and to represent unique and invariant features of an image. Radon transform, one of the oldest techniques widely used in medical imaging, can capture the shape of organs in form of a one-dimensional histogram by projecting parallel rays through a two-dimensional object of concern at a specific angle. In this work, the Radon transform is re-designed to (i) extract features and (ii) generate a descriptor for content-based retrieval of medical images. Radon transform is applied to feed a deep neural network instead of raw images in order to improve the generalization of the network. Specifically, the framework is composed of providing Radon projections of an image to a deep autoencoder, from which the deepest layer is isolated and fed into a multi-layer perceptron for classification. This approach enables the network to (a) train much faster as the Radon projections are computationally inexpensive compared to raw input images, and (b) perform more accurately as Radon projections can make more pronounced and salient features to the network compared to raw images. This framework is validated on a publicly available radiography data set called "Image Retrieval in Medical Applications" (IRMA), consisting of 12,677 train and 1,733 test images, for which an classification accuracy of approximately 82% is achieved, outperforming all autoencoder strategies reported on the Image Retrieval in Medical Applications (IRMA) dataset. The classification accuracy is calculated by dividing the total IRMA error, a calculation outlined by the authors of the data set, with the total number of test images. Finally, a compact handcrafted image descriptor based on Radon transform was designed in this work that is called "Forming Local Intersections of Projections" (FLIP). The FLIP descriptor has been designed, through numerous experiments, for representing histopathology images. The FLIP descriptor is based on Radon transform wherein parallel projections are applied in a local 3x3 neighborhoods with 2 pixel overlap of gray-level images (staining of histopathology images is ignored). Using four equidistant projection directions in each window, the characteristics of the neighborhood is quantified by taking an element-wise minimum between each adjacent projection in each window. Thereafter, the FLIP histogram (descriptor) for each image is constructed. A multi-resolution FLIP (mFLIP) scheme is also proposed which is observed to outperform many state-of-the-art methods, among others deep features, when applied on the histopathology data set KIMIA Path24. Experiments show a total classification accuracy of approximately 72% using SVM classification, which surpasses the current benchmark of approximately 66% on the KIMIA Path24 data set

    Coherent and Collective Quantum Optical Effects in Mesoscopic Systems

    Full text link
    A review of coherent and collective quantum optical effects like superradiance and coherent population trapping in mesoscopic systems is presented. Various new physical realizations of these phenomena are discussed, with a focus on their role for electronic transport and quantum dissipation in coupled nano-scale systems like quantum dots. A number of theoretical tools such as Master equations, polaron transformations, correlation functions, or level statistics are used to describe recent work on dissipative charge qubits (double quantum dots), the Dicke effect, phonon cavities, single oscillators, dark states and adiabatic control in quantum transport, and large spin-boson models. The review attempts to establish connections between concepts from Mesoscopics (quantum transport, coherent scattering, quantum chaos), Quantum Optics (such as superradiance, dark states, boson cavities), and (in its last part) Quantum Information Theory.Comment: Review article submitted to Physics Reports, 175 pages, 58 figures. Revised version (typos, additional appendix, figures and some parts in the discussion

    Signal processing methods for beat tracking, music segmentation, and audio retrieval

    Get PDF
    The goal of music information retrieval (MIR) is to develop novel strategies and techniques for organizing, exploring, accessing, and understanding music data in an efficient manner. The conversion of waveform-based audio data into semantically meaningful feature representations by the use of digital signal processing techniques is at the center of MIR and constitutes a difficult field of research because of the complexity and diversity of music signals. In this thesis, we introduce novel signal processing methods that allow for extracting musically meaningful information from audio signals. As main strategy, we exploit musical knowledge about the signals\u27 properties to derive feature representations that show a significant degree of robustness against musical variations but still exhibit a high musical expressiveness. We apply this general strategy to three different areas of MIR: Firstly, we introduce novel techniques for extracting tempo and beat information, where we particularly consider challenging music with changing tempo and soft note onsets. Secondly, we present novel algorithms for the automated segmentation and analysis of folk song field recordings, where one has to cope with significant fluctuations in intonation and tempo as well as recording artifacts. Thirdly, we explore a cross-version approach to content-based music retrieval based on the query-by-example paradigm. In all three areas, we focus on application scenarios where strong musical variations make the extraction of musically meaningful information a challenging task.Ziel der automatisierten Musikverarbeitung ist die Entwicklung neuer Strategien und Techniken zur effizienten Organisation gro脽er Musiksammlungen. Ein Schwerpunkt liegt in der Anwendung von Methoden der digitalen Signalverarbeitung zur Umwandlung von Audiosignalen in musikalisch aussagekr盲ftige Merkmalsdarstellungen. Gro脽e Herausforderungen bei dieser Aufgabe ergeben sich aus der Komplexit盲t und Vielschichtigkeit der Musiksignale. In dieser Arbeit werden neuartige Methoden vorgestellt, mit deren Hilfe musikalisch interpretierbare Information aus Musiksignalen extrahiert werden kann. Hierbei besteht eine grundlegende Strategie in der konsequenten Ausnutzung musikalischen Vorwissens, um Merkmalsdarstellungen abzuleiten die zum einen ein hohes Ma脽 an Robustheit gegen眉ber musikalischen Variationen und zum anderen eine hohe musikalische Ausdruckskraft besitzen. Dieses Prinzip wenden wir auf drei verschieden Aufgabenstellungen an: Erstens stellen wir neuartige Ans盲tze zur Extraktion von Tempo- und Beat-Information aus Audiosignalen vor, die insbesondere auf anspruchsvolle Szenarien mit wechselnden Tempo und weichen Notenanf盲ngen angewendet werden. Zweitens tragen wir mit neuartigen Algorithmen zur Segmentierung und Analyse von Feldaufnahmen von Volksliedern unter Vorliegen gro脽er Intonationsschwankungen bei. Drittens entwickeln wir effiziente Verfahren zur inhaltsbasierten Suche in gro脽en Datenbest盲nden mit dem Ziel, verschiedene Interpretationen eines Musikst眉ckes zu detektieren. In allen betrachteten Szenarien richten wir unser Augenmerk insbesondere auf die F盲lle in denen auf Grund erheblicher musikalischer Variationen die Extraktion musikalisch aussagekr盲ftiger Informationen eine gro脽e Herausforderung darstellt

    Sub-cycle quantum motion in solids under strong terahertz fields

    Get PDF
    In this thesis, non-perturbative charge carrier dynamics in crystalline solids have been explored in a novel coherent high-field regime bridging nonlinear optics and sub-cycle lightwave electronics. A newly developed high-field laser source delivers phase-stable, ultrashort waveforms in the far- to mid-infrared spectral regime with extremely high field strengths, which serve as a particularly well-defined contactless bias field for the study of non-perturbative charge carrier dynamics and nonlinear spin control in solids. To this end, a fundamentally new approach for ultrafast electric spin injection via tailored near-fields in a three-dimensional optical antenna has been introduced. First operational prototypes set the stage for time-resolved studies of spin-polarized tunnel injection into technologically relevant semiconductor heterostructures. Combining phase-locked waveforms featuring peak electric fields on the order of 100MV/cm with octave-spanning, 8-fs-long optical pulses facilitates lightwave electronics at multi-THz clock rates with sub-cycle time resolution: The strong transients have been employed to drive coherent interband excitation across the fundamental band gap in undoped gallium selenide. Simultaneously, the carriers are accelerated within their respective energy bands through the whole Brillouin zone, giving rise to dynamical Bloch oscillations. This highly anharmonic quantum motion results in the emission of a record-bandwidth, phase-stable high-order harmonic spectrum which covers more than 12 optical octaves. Yet more importantly, the terahertz-driven high-harmonic emission has been temporally resolved in intensity and relative phase and in precise correlation with the driving waveform. A novel cross-correlation scheme with synchronized electro-optic sampling clocks the underlying dynamics with an accuracy of only a fraction of 1/20 of a single driving field cycle: The high-order harmonics are emitted as a unipolar pulse train of ultrashort and nearly unchirped bursts, which emerge exactly at the driving field crests. As explained by a quantum-mechanical many-body theory, these findings reveal a novel strong-field quantum interference between several, off-resonantly driven interband polarization pathways, including even electronic transitions well below the Fermi level. A sophisticated examination of non-perturbative high-order harmonic generation along different crystallographic directions in gallium selenide has brought a surprising polarization behaviour of emitted harmonics to light. A phenomenological model based on the properties of frequency combs reconciles the spectrally, temporally and polarization-resolved findings and enables a comparison of the unraveled properties of solid-state high-order harmonic generation to straightforward symmetry arguments known from perturbative nonlinear optics

    Acoustical measurements on stages of nine U.S. concert halls

    Get PDF
    corecore