8,769 research outputs found

    DeepMasterPrints: Generating MasterPrints for Dictionary Attacks via Latent Variable Evolution

    Full text link
    Recent research has demonstrated the vulnerability of fingerprint recognition systems to dictionary attacks based on MasterPrints. MasterPrints are real or synthetic fingerprints that can fortuitously match with a large number of fingerprints thereby undermining the security afforded by fingerprint systems. Previous work by Roy et al. generated synthetic MasterPrints at the feature-level. In this work we generate complete image-level MasterPrints known as DeepMasterPrints, whose attack accuracy is found to be much superior than that of previous methods. The proposed method, referred to as Latent Variable Evolution, is based on training a Generative Adversarial Network on a set of real fingerprint images. Stochastic search in the form of the Covariance Matrix Adaptation Evolution Strategy is then used to search for latent input variables to the generator network that can maximize the number of impostor matches as assessed by a fingerprint recognizer. Experiments convey the efficacy of the proposed method in generating DeepMasterPrints. The underlying method is likely to have broad applications in fingerprint security as well as fingerprint synthesis.Comment: 8 pages; added new verification systems and diagrams. Accepted to conference Biometrics: Theory, Applications, and Systems 201

    Water pollutant fingerprinting tracks recent industrial transfer from coastal to inland China: a case study

    Get PDF
    In recent years, China’s developed regions have transferred industries to undeveloped regions. Large numbers of unlicensed or unregistered enterprises are widespread in these undeveloped regions and they are subject to minimal regulation. Current methods for tracing industrial transfers in these areas, based on enterprise registration information or economic surveys, do not work. The authors have developed an analytical framework combining water fingerprinting and evolutionary analysis to trace the pollution transfer features between water sources. We collected samples in Eastern China (industrial export) and Central China (industrial acceptance) separately from two water systems. Based on the water pollutant fingerprints and evolutionary trees, we traced the pollution transfer associated with industrial transfer between the two areas. The results are consistent with four episodes of industrial transfers over the past decade. The results also show likely types of the transferred industries - electronics, plastics, and biomedicines - that contribute to the water pollution transfer

    Diversity across Seasons of Culturable Pseudomonas from a Desiccation Lagoon in Cuatro Cienegas, Mexico.

    Get PDF
    Cuatro Cienegas basin (CCB) is a biodiversity reservoir within the Chihuahuan desert that includes several water systems subject to marked seasonality. While several studies have focused on biodiversity inventories, this is the first study that describes seasonal changes in diversity within the basin. We sampled Pseudomonas populations from a seasonally variable water system at four different sampling dates (August 2003, January 2004, January 2005, and August 2005). A total of 70 Pseudomonas isolates across seasons were obtained, genotyped by fingerprinting (BOX-PCR), and taxonomically characterized by 16S rDNA sequencing. We found 35 unique genotypes, and two numerically dominant lineages (16S rDNA sequences) that made up 64% of the sample: P. cuatrocienegasensis and P. otitidis. We did not recover genotypes across seasons, but lineages reoccurred across seasons; P. cuatrocienegasensis was isolated exclusively in winter, while P. otitidis was only recovered in summer. We statistically show that taxonomic identity of isolates is not independent of the sampling season, and that winter and summer populations are different. In addition to the genetic description of populations, we show exploratory measures of growth rates at different temperatures, suggesting physiological differences between populations. Altogether, the results indicate seasonal changes in diversity of free-living aquatic Pseudomonas populations from CCB
    corecore