115 research outputs found

    Improvement of fingerprint retrieval by a statistical classifier

    Get PDF
    The topics of fingerprint classification, indexing, and retrieval have been studied extensively in the past decades. One problem faced by researchers is that in all publicly available fingerprint databases, only a few fingerprint samples from each individual are available for training and testing, making it inappropriate to use sophisticated statistical methods for recognition. Hence most of the previous works resorted to simple kk-nearest neighbor (kk-NN) classification. However, the kk-NN classifier has the drawbacks of being comparatively slow and less accurate. In this paper, we tackle this problem by first artificially expanding the set of training samples using our previously proposed spatial modeling technique. With the expanded training set, we are then able to employ a more sophisticated classifier such as the Bayes classifier for recognition. We apply the proposed method to the problem of one-to-NN fingerprint identification and retrieval. The accuracy and speed are evaluated using the benchmarking FVC 2000, FVC 2002, and NIST-4 databases, and satisfactory retrieval performance is achieved. © 2010 IEEE.published_or_final_versio

    Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties

    Get PDF
    We introduce a fingerprint representation of molecules based on a Fourier series of atomic radial distribution functions. This fingerprint is unique (except for chirality), continuous, and differentiable with respect to atomic coordinates and nuclear charges. It is invariant with respect to translation, rotation, and nuclear permutation, and requires no pre-conceived knowledge about chemical bonding, topology, or electronic orbitals. As such it meets many important criteria for a good molecular representation, suggesting its usefulness for machine learning models of molecular properties trained across chemical compound space. To assess the performance of this new descriptor we have trained machine learning models of molecular enthalpies of atomization for training sets with up to 10k organic molecules, drawn at random from a published set of 134k organic molecules. We validate the descriptor on all remaining molecules of the 134k set. For a training set of 5k molecules the fingerprint descriptor achieves a mean absolute error of 8.0 kcal/mol, respectively. This is slightly worse than the performance attained using the Coulomb matrix, another popular alternative, reaching 6.2 kcal/mol for the same training and test sets

    Fingerprint Matching using Moments and Moment Invariants

    Get PDF

    Fingerprint Matching using Moments and Moment Invariants

    Get PDF

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    User identification system for inked fingerprint pattern based on central moments

    Get PDF
    The use of the fingerprint recognition has been and remains very important in many security applications and licensing systems. Fingerprint recognition is required in many areas such as licensing access to networks, corporate computers and organizations. In this paper, the system of fingerprint recognition that can be used in several cases of fingerprint such as being rounded at an angle by a randomly inked fingerprint on paper. So, fingerprint image is tooked at a different angle in order to identify the owner of the ink fingerprint. This method involves two working levels. The first one, the fingerprint pattern's shape features are calculated based on the central moments of each image being listed on a regular basis with three states rotation. Each image is rotated at a specified angle. In the second level, the fingerprint holder entered is identified using the previously extracted shape features and compared to the three local databases content of three rotation states. When applied the method for several persons by taken their inked fingerprint on the paper, the accuracy of the system in identifying the owner of the fingerprint after rotation states were close to 83.71

    The Optimisation of Elementary and Integrative Content-Based Image Retrieval Techniques

    Get PDF
    Image retrieval plays a major role in many image processing applications. However, a number of factors (e.g. rotation, non-uniform illumination, noise and lack of spatial information) can disrupt the outputs of image retrieval systems such that they cannot produce the desired results. In recent years, many researchers have introduced different approaches to overcome this problem. Colour-based CBIR (content-based image retrieval) and shape-based CBIR were the most commonly used techniques for obtaining image signatures. Although the colour histogram and shape descriptor have produced satisfactory results for certain applications, they still suffer many theoretical and practical problems. A prominent one among them is the well-known “curse of dimensionality “. In this research, a new Fuzzy Fusion-based Colour and Shape Signature (FFCSS) approach for integrating colour-only and shape-only features has been investigated to produce an effective image feature vector for database retrieval. The proposed technique is based on an optimised fuzzy colour scheme and robust shape descriptors. Experimental tests were carried out to check the behaviour of the FFCSS-based system, including sensitivity and robustness of the proposed signature of the sampled images, especially under varied conditions of, rotation, scaling, noise and light intensity. To further improve retrieval efficiency of the devised signature model, the target image repositories were clustered into several groups using the k-means clustering algorithm at system runtime, where the search begins at the centres of each cluster. The FFCSS-based approach has proven superior to other benchmarked classic CBIR methods, hence this research makes a substantial contribution towards corresponding theoretical and practical fronts

    Biometric Identification Systems: Feature Level Clustering of Large Biometric Data and DWT Based Hash Coded Bar Biometric System

    Get PDF
    Biometric authentication systems are fast replacing conventional identification schemes such as passwords and PIN numbers. This paper introduces a novel matching scheme that uses a image hash scheme. It uses Discrete Wavelet Transformation (DWT) of biometric images and randomized processing strategies for hashing. In this scheme the input image is decomposed into approximation, vertical, horizontal and diagonal coefficients using the discrete wavelet transform. The algorithm converts images into binary strings and is robust against compression, distortion and other transformations. As a case study the system is tested on ear database and is outperforming with an accuracy of 96.37% with considerably low FAR of 0.17%. The performance shows that the system can be deployed for high level security applications
    • 

    corecore