60 research outputs found

    Handbook of Vascular Biometrics

    Get PDF

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    A RISK-BASED VERIFICATION FRAMEWORK FOR OFFSHORE WIND FARM DEVELOPMENT: DESIGN, INSTALLATION, OPERATIONS AND MAINTENANCE OF OFFSHORE WIND TURBINES

    Get PDF
    This thesis encompasses a holistic review of the development trends in wind turbine technology (onshore and offshore) and the challenges perceived at the stages of design, construction and operations of modern-day wind energy technology (Friedrich and Lukas, 2017). The main focus of this study is to evaluate the risks associated with offshore wind farm development (OWFD). This is achieved by first estimating those perceived risks, understanding the relative importance of each individual risk, and carrying out an assessment using a specialist analytical tool known as AHiP-Evi. AHiP-Evi was developed through a combination of application of Analytic Hierarchy Process (AHP) and Evidential Reasoning (ER) techniques. The AHP was used to ascertain the weighting of the respective risk variables according to their relative importance, while the ER was used to evaluate the aggregated influence of the collective risk variables associated with the OWFD. Finally, a specific modelling tool known as BN-SAT (Bayesian Network Sensitivity Analysis Technique) was developed to evaluate the probabilities of occurrence of the variable nodes and their overall impacts on the decision node (OWFD). The BN-SAT is comprised of a combination of Bayesian networks (BNs) concepts and a sensitivity analysis (SA) approach. The AHiP-Evi model initially developed in this study is transformed into the BN structure in order to compute the conditional and unconditional prior probability for each starting node using the NETICA analytical software to determine the aggregated impact of the specific risk variables on the OWFD. The outcome from this modelling analysis is then compared to the initial assessment carried out by the application of the AHiP-Evi modelling tool in order to validate the robustness of both modelling tools. In the case study of this research, the percentage difference of the outcomes of the two models is insignificant, which demonstrates the fact that both systems are effective. The Fuzzy Analytic Hierarchy Process (FAHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) were integrated to develop a specific model for the selection of best-case risk management technique (RMT). Based on the decision makers’ (DMs) aggregated judgements, it was possible to compute the values and determine the best-case RMT dependent on the decision variables driving the decision - for example, costs and benefits, through the developed integrated model known as FAHP-FTOPSIS. The outcome of this selection model has been seen to be reasonably practical and a successful conclusion of the research contribution. Awareness of the aggregated impact of the risk variables is important in making the decision about appropriate investments in a strategic improvement of risk management and efficient resource allocations to the offshore wind industry

    Computational Interrogation of Transcriptional and Post-Transcriptional Mechanisms Regulating Dendritic Development

    Get PDF
    The specification and modulation of cell-type specific dendritic morphologies plays a pivotal role in nervous system development, connectivity, structural plasticity, and function. Regulation of gene expression is controlled by a wide variety of cellular and molecular mechanisms, of which two major types are transcription factors (TFs) and microRNAs (miRNAs). In Drosophila, dendritic complexity of dendritic arborization (da) sensory neurons of the peripheral nervous system are known to be regulated by two transcription factors Cut and Knot, although much remains unknown about the molecular mechanisms and regulatory networks via which they regulate the final arbor shape through spatio-temporal modulation of dendritic development and dynamics. Here we use bioinformatics analysis of transcriptomic data to identify putative genomic targets of these TFs with a particular emphasis on those that effect neuronal cytoskeletal architecture. We use transcriptomic, as well as data from various genomic and protein interaction databases, to build a weighted functional gene regulatory network for Knot, to identify the biological pathways and downstream genes that this TF regulates. To corroborate bioinformatics network predictions, knot putative targets, which classify into neuronal and cytoskeletal functional groups, have been experimentally validated by in vivo genetic perturbations to elucidate their role in Knot-mediated Class IV (CIV) dendritogenesis. MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel R based tool, IntramiR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithm to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using D.melanogaster as a model organism for bioinformatics analyses and functional validation, and identified targets for 83 intragenic miRNAs. Predicted targets were validated, using in vivo genetic perturbation. Moreover, we are constructing interaction maps of intragenic miRNAs focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development

    Big Data Security (Volume 3)

    Get PDF
    After a short description of the key concepts of big data the book explores on the secrecy and security threats posed especially by cloud based data storage. It delivers conceptual frameworks and models along with case studies of recent technology

    The human role in space. Volume 2: Research analysis and technology report

    Get PDF
    The human role in space was studied. The role and the degree of direct involvement of humans that will be required in future space missions are investigated. Valid criteria for allocating functional activities between humans and machines were established. The technology requirements, economics, and benefits of the human presence in space was examined. Topics discussed include: human qualifications for space activities; specific project assessments; technology requirements and tasks; and generalization on human roles in space

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 385)

    Get PDF
    This bibliography lists 536 reports, articles and other documents introduced into the NASA Scientific and Technical Information System Database. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Susceptibility to late onset hearing loss: an investigation into genetic variation at the Brn-3c locus.

    Get PDF
    BrnSc (BrnS.l, POU4F3) encoding a POU domain transcription factor is a candidate gene for late onset sensorineural hearing loss, which is exhibited by a large proportion of the ageing population. To identify common sequence variants at the Brn-3c locus mutation scanning of the BrnSc cDNA, intron and 5'-flanking region was performed by PCR-SSCP analysis in 45 members of the general population. Seven polymorphic sites were identified of which five within the Bm-Sc 5'-flanking region appear common. A functional screening approach utilising in-vitro assays suggests that at least three common sequence variants in the Brn-Sc 5'-flanking region could have a functional affect: -566(GT)i7-23, -1391A>C and a complex multi-allelic poly-G polymorphism at - 3432 that exhibits multiple variations in length together with single base substitutions within the guanine repeat. The -3432poly-G polymorphism modifies the binding affinity of an OC-2 derived nuclear protein and there is convincing evidence that this is the transcription factor SP1. Use of purified human recombinant SP1 protein, in-vitro translated SP1 and in-vitro translated SP3 confirms that the -3432polyG polymorphism modulates a high affinity SP family binding site and evidence suggests that this alters the regulation of the BrnSc promoter when SP1 levels are limiting, p<0.05. Moreover, the data suggest a functional interaction between the -3432poly-G polymorphism and the -566(GT)i7.23 repeat which associate to determine the response of the Brn-3c gene to SP1. Similarly, evidence suggests that the variant allele, -1391C has a reduced affinity for an OC-2 derived nuclear protein and this is consistent with a significant decrease in basal activity of the Brn-Sc promoter, pC were genotyped for a pilot association study but allelic frequencies were not found to significantly differ between the patient and control populations examined (by %2 analysis). Further large-scale population studies are required to establish whether these common sequence variants are associated with late onset hearing loss

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    • …
    corecore